版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省大慶市林甸四中學2024年中考數(shù)學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內(nèi)接多邊形一定是正多邊形;⑤若一個事件可能發(fā)生的結(jié)果共有n種,則每一種結(jié)果發(fā)生的可能性是.其中正確的個數(shù)()A.1 B.2 C.3 D.42.下列所給函數(shù)中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+13.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20184.若※是新規(guī)定的某種運算符號,設(shè)a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-25.如圖,點ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°6.如圖,一張半徑為的圓形紙片在邊長為的正方形內(nèi)任意移動,則在該正方形內(nèi),這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.7.為豐富學生課外活動,某校積極開展社團活動,開設(shè)的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據(jù)自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結(jié)論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數(shù)占體育社團人數(shù)的D.據(jù)此估計全校1000名八年級同學,選擇科目B的有140人8.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤49.共享單車為市民短距離出行帶來了極大便利.據(jù)2017年“深圳互聯(lián)網(wǎng)自行車發(fā)展評估報告”披露,深圳市日均使用共享單車2590000人次,其中2590000用科學記數(shù)法表示為()A.259×104 B.25.9×105 C.2.59×106 D.0.259×10710.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.若實數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)12.2017年端午小長假的第一天,永州市共接待旅客約275000人次,請將275000用科學記數(shù)法表示為___________________.13.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.14.如圖,如果四邊形ABCD中,AD=BC=6,點E、F、G分別是AB、BD、AC的中點,那么△EGF面積的最大值為_____.15.函數(shù)y=+中,自變量x的取值范圍是_____.16.已知,那么__.17.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個數(shù)是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.19.(5分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進這兩種品牌化妝品共50套,且進貨價錢不超過4000元,應如何選擇進貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?20.(8分)在平面直角坐標系中,O為原點,點A(3,0),點B(0,4),把△ABO繞點A順時針旋轉(zhuǎn),得△AB′O′,點B,O旋轉(zhuǎn)后的對應點為B′,O.(1)如圖1,當旋轉(zhuǎn)角為90°時,求BB′的長;(2)如圖2,當旋轉(zhuǎn)角為120°時,求點O′的坐標;(3)在(2)的條件下,邊OB上的一點P旋轉(zhuǎn)后的對應點為P′,當O′P+AP′取得最小值時,求點P′的坐標.(直接寫出結(jié)果即可)21.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.22.(10分)如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點F為AB的中點,連結(jié)FN、FM,求證:△MFN∽△BDC.23.(12分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結(jié)果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)24.(14分)解方程:xx+1+2
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義逐一判斷可得.【詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結(jié)論錯誤;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,試驗次數(shù)足夠大時可近似地看做事件A的概率,故此結(jié)論錯誤;③各角相等的圓外切多邊形是正多邊形,此結(jié)論正確;④各角相等的圓內(nèi)接多邊形不一定是正多邊形,如圓內(nèi)接矩形,各角相等,但不是正多邊形,故此結(jié)論錯誤;⑤若一個事件可能發(fā)生的結(jié)果共有n種,再每種結(jié)果發(fā)生的可能性相同是,每一種結(jié)果發(fā)生的可能性是.故此結(jié)論錯誤;故選:A.【點睛】本題主要考查命題的真假,解題的關(guān)鍵是掌握垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義.2、A【解析】
根據(jù)二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及反比例函數(shù)的性質(zhì)判斷出函數(shù)符合y隨x的增大而減小的選項.【詳解】解:A.此函數(shù)為一次函數(shù),y隨x的增大而減小,正確;B.此函數(shù)為二次函數(shù),當x<0時,y隨x的增大而減小,錯誤;C.此函數(shù)為反比例函數(shù),在每個象限,y隨x的增大而減小,錯誤;D.此函數(shù)為一次函數(shù),y隨x的增大而增大,錯誤.故選A.【點睛】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì),掌握函數(shù)的增減性是解決問題的關(guān)鍵.3、A【解析】
根據(jù)去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則,熟知去括號法則、絕對值的性質(zhì)、零指數(shù)冪及負整數(shù)指數(shù)冪的計算法則是解決問題的關(guān)鍵.4、C【解析】解:由題意得:,∴,∴x=±1.故選C.5、C【解析】
由AO∥BC,得到∠ACB=∠OAC=19°,根據(jù)圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點睛】本題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應用是解此題的關(guān)鍵.6、C【解析】
這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關(guān)鍵.7、B【解析】
A選項先求出調(diào)查的學生人數(shù),再求選科目E的人數(shù)來判定,B選項先求出A科目人數(shù),再利用×360°判定即可,C選項中由D的人數(shù)及總?cè)藬?shù)即可判定,D選項利用總?cè)藬?shù)乘以樣本中B人數(shù)所占比例即可判定.【詳解】解:調(diào)查的學生人數(shù)為:12÷24%=50(人),選科目E的人數(shù)為:50×10%=5(人),故A選項正確,選科目A的人數(shù)為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數(shù)為10,總?cè)藬?shù)為50人,所以選科目D的人數(shù)占體育社團人數(shù)的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【點睛】本題主要考查了條形統(tǒng)計圖及扇形統(tǒng)計圖,解題的關(guān)鍵是讀懂統(tǒng)計圖,從統(tǒng)計圖中找到準確信息.8、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.9、C【解析】
絕對值大于1的正數(shù)可以科學計數(shù)法,a×10n,即可得出答案.【詳解】n由左邊第一個不為0的數(shù)字前面的0的個數(shù)決定,所以此處n=6.【點睛】本題考查了科學計數(shù)法的運用,熟悉掌握是解決本題的關(guān)鍵.10、B【解析】
由折疊的性質(zhì)得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結(jié)論EF=DF;易得FC=FA,設(shè)FA=x,則FC=x,F(xiàn)D=6-x,在Rt△CDF中利用勾股定理得到關(guān)于x的方程x2=42+(6-x)2,解方程求出x即可.【詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四邊形ABCD為矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四邊形ABCD為矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
設(shè)FA=x,則FC=x,F(xiàn)D=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【點睛】考查了折疊的性質(zhì):折疊前后兩圖形全等,即對應角相等,對應邊相等.也考查了矩形的性質(zhì)和三角形全等的判定與性質(zhì)以及勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、>【解析】
根據(jù)數(shù)軸可以確定m、n的大小關(guān)系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號,可得結(jié)果.【詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點睛】本題考查了整式的加減和數(shù)軸,熟練掌握運算法則是解題的關(guān)鍵.12、1.75×2【解析】試題解析:175000=1.75×2.考點:科學計數(shù)法----表示較大的數(shù)13、1【解析】
先根據(jù)根的判別式求出c的取值范圍,然后在范圍內(nèi)隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關(guān)系是解題的關(guān)鍵.14、4.1.【解析】
取CD的值中點M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,由此可得結(jié)論.【詳解】解:取CD的值中點M,連接GM,F(xiàn)M.∵AG=CG,AE=EB,∴GE是△ABC的中位線∴EG=BC,同理可證:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四邊形EFMG是菱形,∴當EF⊥EG時,四邊形EFMG是矩形,此時四邊形EFMG的面積最大,最大面積為9,∴△EGF的面積的最大值為S四邊形EFMG=4.1,故答案為4.1.【點睛】本題主要考查菱形的判定和性質(zhì),利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關(guān)鍵.15、x≥﹣2且x≠1【解析】分析:根據(jù)使分式和二次根式有意義的要求列出關(guān)于x的不等式組,解不等式組即可求得x的取值范圍.詳解:∵有意義,∴,解得:且.故答案為:且.點睛:本題解題的關(guān)鍵是需注意:要使函數(shù)有意義,的取值需同時滿足兩個條件:和,二者缺一不可.16、【解析】
根據(jù)比例的性質(zhì),設(shè)x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設(shè)x=5a,則y=2a,那么.故答案為:.【點睛】本題主要考查了比例的性質(zhì),根據(jù)比例式用同一個未知數(shù)得出的值進而求解是解題關(guān)鍵.17、①②③④.【解析】
由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;
由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,F(xiàn)G⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD?FE=AD2=FQ?AC,④正確;
故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設(shè)設(shè)E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設(shè)直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設(shè)E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值19、(1)A、B兩種品牌得化妝品每套進價分別為100元,75元;(2)A種品牌得化妝品購進10套,B種品牌得化妝品購進40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元【解析】
(1)求A、B兩種品牌的化妝品每套進價分別為多少元,可設(shè)A種品牌的化妝品每套進價為x元,B種品牌的化妝品每套進價為y元.根據(jù)兩種購買方法,列出方程組解方程;(2)根據(jù)題意列出不等式,求出m的范圍,再用代數(shù)式表示出利潤,即可得出答案.【詳解】(1)設(shè)A種品牌的化妝品每套進價為x元,B種品牌的化妝品每套進價為y元.得解得:,答:A、B兩種品牌得化妝品每套進價分別為100元,75元.(2)設(shè)A種品牌得化妝品購進m套,則B種品牌得化妝品購進(50﹣m)套.根據(jù)題意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利潤是30m+20(50﹣m)=1000+10m,當m取最大10時,利潤最大,最大利潤是1000+100=1100,所以A種品牌得化妝品購進10套,B種品牌得化妝品購進40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元.【點睛】本題考查一元一次不等式組的應用,將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,讀懂題列出不等式關(guān)系式即可求解.20、(1)5;(2)O'(,);(3)P'(,).【解析】
(1)先求出AB.利用旋轉(zhuǎn)判斷出△ABB'是等腰直角三角形,即可得出結(jié)論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質(zhì)求出AH,OH,即可得出結(jié)論;(3)先確定出直線O'C的解析式,進而確定出點P的坐標,再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋轉(zhuǎn)知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(2)如圖2,過點O'作O'H⊥x軸于H,由旋轉(zhuǎn)知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();(3)由旋轉(zhuǎn)知,AP=AP',∴O'P+AP'=O'P+AP.如圖3,作A關(guān)于y軸的對稱點C,連接O'C交y軸于P,∴O'P+AP=O'P+CP=O'C,此時,O'P+AP的值最?。唿cC與點A關(guān)于y軸對稱,∴C(﹣3,0).∵O'(),∴直線O'C的解析式為y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().【點睛】本題是幾何變換綜合題,考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),含30度角的直角三角形的性質(zhì),構(gòu)造出直角三角形是解答本題的關(guān)鍵.21、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解析】試題分析:(1)由點A與點B關(guān)于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結(jié)論;(3)假設(shè)存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8試題解析:(1)∵點A與點B關(guān)于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數(shù)的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數(shù)的解析式:y=24x(2)∵點A與點B關(guān)于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點C過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8x的圖象于點分別連結(jié)PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.22、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣工程師的工作總結(jié)
- 2025年度商業(yè)寫字樓車位使用權(quán)轉(zhuǎn)讓合同模板
- 二零二五年度大型商場消防工程驗收及安全評估合同3篇
- 二零二五年度個人消費信貸合同模板8篇
- 二零二五年度青少年戶外夏令營活動參加協(xié)議3篇
- 二零二五版房地產(chǎn)售后服務居間合同范本
- 二零二五年度個人房產(chǎn)買賣合同終止協(xié)議3篇
- 二零二五年度鋼材采購與供應合同范本
- 二零二五年度深海探測設(shè)備制造個人工勞務分包合同4篇
- 二零二五年度離婚探望權(quán)協(xié)議范本與子女監(jiān)護權(quán)規(guī)定3篇
- 給排水科學與工程基礎(chǔ)知識單選題100道及答案解析
- 2024年土地變更調(diào)查培訓
- 2024年全國外貿(mào)單證員鑒定理論試題庫(含答案)
- 新版中國食物成分表
- 《財務管理學(第10版)》課件 第5、6章 長期籌資方式、資本結(jié)構(gòu)決策
- 房屋永久居住權(quán)合同模板
- 初中英語不規(guī)則動詞表(譯林版-中英)
- 2024年3月四川省公務員考試面試題及參考答案
- 新生兒黃疸早期識別課件
- 醫(yī)藥營銷團隊建設(shè)與管理
- 二年級數(shù)學上冊口算題100道(全冊完整)
評論
0/150
提交評論