2024屆江蘇省鎮(zhèn)江市五校中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2024屆江蘇省鎮(zhèn)江市五校中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2024屆江蘇省鎮(zhèn)江市五校中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2024屆江蘇省鎮(zhèn)江市五校中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2024屆江蘇省鎮(zhèn)江市五校中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省鎮(zhèn)江市五校中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學(xué)記數(shù)法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×1062.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.213.如圖,在?ABCD中,AB=2,BC=1.以點(diǎn)C為圓心,適當(dāng)長為半徑畫弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點(diǎn)N,射線CN交BA的延長線于點(diǎn)E,則AE的長是()A. B.1 C. D.4.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.485.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8336.如圖,O為直線AB上一點(diǎn),OE平分∠BOC,OD⊥OE于點(diǎn)O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°7.在剛過去的2017年,我國整體經(jīng)濟(jì)實(shí)力躍上了一個(gè)新臺(tái)階,城鎮(zhèn)新增就業(yè)1351萬人,數(shù)據(jù)“1351萬”用科學(xué)記數(shù)法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1088.在學(xué)校演講比賽中,10名選手的成績折線統(tǒng)計(jì)圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數(shù)是5 C.中位數(shù)是90 D.平均分為87.59.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°10.等腰三角形兩邊長分別是2cm和5cm,則這個(gè)三角形周長是()A.9cmB.12cmC.9cm或12cmD.14cm二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若一段弧的半徑為24,所對(duì)圓心角為60°,則這段弧長為____.12.不等式的解集是________________13.如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____________.14.一次函數(shù)y=kx+b的圖像如圖所示,則當(dāng)kx+b>0時(shí),x的取值范圍為___________.15.關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍是_____.16.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長線上,當(dāng)正方形CDEF的邊長為4時(shí),陰影部分的面積為_____.三、解答題(共8題,共72分)17.(8分)“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)以上信息,解答下列問題:(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?8.(8分)((1)計(jì)算:;(2)先化簡,再求值:,其中a=.19.(8分)如圖,已知拋物線與軸交于兩點(diǎn)(A點(diǎn)在B點(diǎn)的左邊),與軸交于點(diǎn).(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱軸上,若以為邊,以點(diǎn)、、、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)的坐標(biāo);(3)如圖2,過點(diǎn)作直線的平行線交拋物線于另一點(diǎn),交軸于點(diǎn),若﹕=1﹕1.求的值.20.(8分)先化簡,再求值:(1+)÷,其中x=+1.21.(8分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).22.(10分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點(diǎn)P,過B點(diǎn)的切線交OP于點(diǎn)C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.23.(12分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點(diǎn)D,E是BD的中點(diǎn),聯(lián)結(jié)AE并延長,交邊BC于點(diǎn)F.(1)求∠EAD的余切值;(2)求的值.24.如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長線于點(diǎn)F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】.故選B.點(diǎn)睛:在把一個(gè)絕對(duì)值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時(shí),我們要注意兩點(diǎn):①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點(diǎn)移位來確定).2、A【解析】

根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點(diǎn)A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點(diǎn)睛】此題主要考查了解直角三角形的知識(shí),作出AD⊥BC,進(jìn)而得出相關(guān)線段的長度是解決問題的關(guān)鍵.3、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點(diǎn)睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.4、D【解析】解:如圖取CD的中點(diǎn)F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,F(xiàn)C=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,F(xiàn)C⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設(shè)BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設(shè)AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點(diǎn)睛:本題考查直角梯形的性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的性質(zhì)定理、勾股定理、二元二次方程組等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問題,屬于中考?jí)狠S題.5、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.6、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點(diǎn)睛:本題考查了角平分線的定義:從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線叫做這個(gè)角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.7、B【解析】

根據(jù)科學(xué)記數(shù)法進(jìn)行解答.【詳解】1315萬即13510000,用科學(xué)記數(shù)法表示為1.351×107.故選擇B.【點(diǎn)睛】本題主要考查科學(xué)記數(shù)法,科學(xué)記數(shù)法表示數(shù)的標(biāo)準(zhǔn)形式是a×10n(1≤│a│<10且n為整數(shù)).8、C【解析】試題分析:根據(jù)折線統(tǒng)計(jì)圖可得:最高分為95,眾數(shù)為90;中位數(shù)90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.9、B【解析】

試題分析:如圖,如圖,過點(diǎn)E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B10、B【解析】當(dāng)腰長是2cm時(shí),因?yàn)?+2<5,不符合三角形的三邊關(guān)系,排除;當(dāng)腰長是5cm時(shí),因?yàn)?+5>2,符合三角形三邊關(guān)系,此時(shí)周長是12cm.故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、8π【解析】試題分析:∵弧的半徑為24,所對(duì)圓心角為60°,∴弧長為l==8π.故答案為8π.【考點(diǎn)】弧長的計(jì)算.12、【解析】

首先去分母進(jìn)而解出不等式即可.【詳解】去分母得,1-2x>15移項(xiàng)得,-2x>15-1合并同類項(xiàng)得,-2x>14系數(shù)化為1,得x<-7.故答案為x<-7.【點(diǎn)睛】此題考查了解一元一次不等式,解不等式要依據(jù)不等式的基本性質(zhì):(1)不等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)或整式不等號(hào)的方向不變;(2)不等式的兩邊同時(shí)乘以或除以同一個(gè)正數(shù)不等號(hào)的方向不變;(3)不等式的兩邊同時(shí)乘以或除以同一個(gè)負(fù)數(shù)不等號(hào)的方向改變.13、﹣24【解析】分析:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點(diǎn)C的坐標(biāo)為,這樣由點(diǎn)C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點(diǎn)C的坐標(biāo)為,∵點(diǎn)C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點(diǎn)睛:本題的解題要點(diǎn)有兩點(diǎn):(1)作出如圖所示的輔助線,設(shè)CF=4x,結(jié)合已知條件把OF和OA用含x的式子表達(dá)出來;(2)由四邊形AOCB是菱形,點(diǎn)D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.14、x>1【解析】分析:題目要求kx+b>0,即一次函數(shù)的圖像在x軸上方時(shí),觀察圖象即可得x的取值范圍.詳解:∵kx+b>0,∴一次函數(shù)的圖像在x軸上方時(shí),∴x的取值范圍為:x>1.故答案為x>1.點(diǎn)睛:本題考查了一次函數(shù)與一元一次不等式的關(guān)系,主要考查學(xué)生的觀察視圖能力.15、m≤1【解析】

根據(jù)一元二次方程有實(shí)數(shù)根,得出△≥0,建立關(guān)于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【點(diǎn)睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關(guān)系:△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;△=0,方程有兩個(gè)相等的實(shí)數(shù)根;△<0,方程沒有實(shí)數(shù)根是本題的關(guān)鍵.16、4π﹣1【解析】分析:連結(jié)OC,根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計(jì)算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點(diǎn)C是的中點(diǎn),

∴∠COD=45°,

∴OC=CD=4,

∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積

==4π-1.故答案是:4π-1.點(diǎn)睛:考查了正方形的性質(zhì)和扇形面積的計(jì)算,解題的關(guān)鍵是得到扇形半徑的長度.三、解答題(共8題,共72分)17、(1)補(bǔ)全圖形見解析;(2)B;(3)估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級(jí)經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】

(1)根據(jù)被調(diào)查的總?cè)藬?shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生=總?cè)藬?shù)×C情況的比值.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補(bǔ)全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級(jí)經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【點(diǎn)睛】本題考查了眾數(shù)與扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖,解題的關(guān)鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖的相關(guān)知識(shí)點(diǎn).18、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據(jù)0指數(shù)冪及負(fù)整數(shù)指數(shù)冪的計(jì)算法則、特殊角的三角函數(shù)值、絕對(duì)值的性質(zhì)及數(shù)的開方法則計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)混合運(yùn)算的法則進(jìn)行計(jì)算即可;(2)先算括號(hào)里面的,再算除法,最后把a(bǔ)的值代入進(jìn)行計(jì)算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當(dāng)a=時(shí),原式==.19、(1);(2)和;(3)【解析】

(1)設(shè),,再根據(jù)根與系數(shù)的關(guān)系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標(biāo),設(shè)出點(diǎn)Q坐標(biāo),利用平行四邊形的性質(zhì),分類討論點(diǎn)P坐標(biāo),利用全等的性質(zhì)得出P點(diǎn)的橫坐標(biāo)后,分別代入拋物線解析式,求出P點(diǎn)坐標(biāo);(3)過點(diǎn)作DH⊥軸于點(diǎn),由::,可得::.設(shè),可得點(diǎn)坐標(biāo)為,可得.設(shè)點(diǎn)坐標(biāo)為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設(shè),,則是方程的兩根,∴.∵已知拋物線與軸交于點(diǎn).∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點(diǎn)、、、Q為頂點(diǎn)的四邊形是四邊形時(shí),設(shè)拋物線的對(duì)稱軸為,l與交于點(diǎn),過點(diǎn)作⊥l,垂足為點(diǎn),即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點(diǎn)的橫坐標(biāo)為,∴即點(diǎn)坐標(biāo)為.②當(dāng)以為邊,以點(diǎn)、、、Q為頂點(diǎn)的四邊形是四邊形時(shí),設(shè)拋物線的對(duì)稱軸為,l與交于點(diǎn),過點(diǎn)作⊥l,垂足為點(diǎn),即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點(diǎn)的橫坐標(biāo)為,∴即點(diǎn)坐標(biāo)為∴符合條件的點(diǎn)坐標(biāo)為和.過點(diǎn)作DH⊥軸于點(diǎn),∵::,∴::.設(shè),則點(diǎn)坐標(biāo)為,∴.∵點(diǎn)在拋物線上,∴點(diǎn)坐標(biāo)為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點(diǎn)睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運(yùn)用數(shù)形結(jié)合分類討論思想.20、,1+【解析】

運(yùn)用公式化簡,再代入求值.【詳解】原式===,當(dāng)x=+1時(shí),原式=.【點(diǎn)睛】考查分式的化簡求值、整式的化簡求值,解答本題的關(guān)鍵是明確它們各自的計(jì)算方法.21、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對(duì)稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對(duì)角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).22、(1)證明見解析;(2)BP=1.【解析】分析:(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)切線的性質(zhì)得到∠OBC=90°,然后利用等量代換進(jìn)行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC為切線,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴,即,∴BP=1.點(diǎn)睛:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了圓周角定理和相似三角形的判定與性質(zhì).23、(1)∠EAD的余切值為;(2)=.【解析】

(1)在Rt△ADB中,根據(jù)AB=13,cos∠BAC=,求出AD的長,由勾股定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論