




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024年江蘇省灌云縣聯(lián)考數(shù)學(xué)八年級(jí)下冊期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到AB′C′D′,如果AB=1,點(diǎn)C與C′的距離為()A. B. C.1 D.﹣12.不等式的解集是()A. B. C. D.3.方程x(x-6)=0的根是()A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=04.甲、乙、丙、丁四人進(jìn)行射擊測試,每人射擊10次,四人的平均成績均是9.4環(huán),方差分別是0.43,1.13,0.90,1.68,則在本次射擊測試中,成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁5.下列運(yùn)算中正確的是()A.+= B.C. D.6.在△ABC中,a、b、c分別是∠A,∠B,∠C的對邊,若(a﹣2)2+|b﹣2|+=0,則這個(gè)三角形一定是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.鈍角三角形7.要使分式有意義,應(yīng)滿足的條件是()A. B. C. D.8.如圖,平行四邊形ABCD中,EF∥BC,GH∥AB,EF,GH相交于點(diǎn)O,則圖中有平行四邊形()A.4個(gè) B.5個(gè) C.8個(gè) D.9個(gè)9.如圖,在中,,,,將△ABC沿直線BC向右平移得到△DEF,連接AD,若AD=2,則點(diǎn)C到DF的距離為()A.1 B.2 C.2.5 D.410.一組數(shù)據(jù)3,4,4,5,5,5,6,6,7眾數(shù)是()A.4 B.5 C.6 D.7二、填空題(每小題3分,共24分)11.如圖,在△ABC中,∠ACB=90°,M、N分別是AB、AC的中點(diǎn),延長BC至點(diǎn)D,使CD=13BD,連接DM、DN、MN.若AB=6,則DN=___12.若二次函數(shù)y=mx2-(2m-1)x+m的圖像頂點(diǎn)在y軸上,則m=.13.甲、乙兩人進(jìn)行射擊測試,每人10次射擊的平均成績恰好都是9.5環(huán),方差分別是S甲2=0.90平方環(huán),S乙2=1.22平方環(huán),在本次射擊測試中,甲、乙兩人中成績較穩(wěn)定的是__.14.已知直線與x軸的交點(diǎn)在、之間(包括、兩點(diǎn)),則的取值范圍是__________.15.一次函數(shù)y=kx+3的圖象過點(diǎn)A(1,4),則這個(gè)一次函數(shù)的解析式_____.16.如圖,以Rt△ABC的斜邊BC為邊在三角形ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連結(jié)AO,如果AB=4,AO=6,則△ABC的面積為_____.17.如圖,雙曲線y=(x>0)經(jīng)過四邊形OABC的頂點(diǎn)A、C,∠ABC=90°,OC平分OA與x軸正半軸的夾角,AB∥x軸.將△ABC沿AC翻折后得△AB′C,B′點(diǎn)落在OA上,則四邊形OABC的面積是.18.化簡:=.三、解答題(共66分)19.(10分)在平面直角坐標(biāo)系xOy中,對于兩點(diǎn)A,B,給出如下定義:以線段AB為邊的正方形稱為點(diǎn)A,B的“確定正方形”.如圖為點(diǎn)A,B的“確定正方形”的示意圖.(1)如果點(diǎn)M的坐標(biāo)為(0,1),點(diǎn)N的坐標(biāo)為(3,1),那么點(diǎn)M,N的“確定正方形”的面積為___________;(2)已知點(diǎn)O的坐標(biāo)為(0,0),點(diǎn)C為直線上一動(dòng)點(diǎn),當(dāng)點(diǎn)O,C的“確定正方形”的面積最小,且最小面積為2時(shí),求b的值.(3)已知點(diǎn)E在以邊長為2的正方形的邊上,且該正方形的邊與兩坐標(biāo)軸平行,對角線交點(diǎn)為P(m,0),點(diǎn)F在直線上,若要使所有點(diǎn)E,F(xiàn)的“確定正方形”的面積都不小于2,直接寫出m的取值范圍.20.(6分)如圖,四邊形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC=12cm,求這個(gè)四邊形的面積?21.(6分)如圖,四邊形OABC為矩形,點(diǎn)B坐標(biāo)為(4,2),A,C分別在x軸,y軸上,點(diǎn)F在第一象限內(nèi),OF的長度不變,且反比例函數(shù)經(jīng)過點(diǎn)F.(1)如圖1,當(dāng)F在直線y=x上時(shí),函數(shù)圖象過點(diǎn)B,求線段OF的長.(2)如圖2,若OF從(1)中位置繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),反比例函數(shù)圖象與BC,AB相交,交點(diǎn)分別為D,E,連結(jié)OD,DE,OE.①求證:CD=2AE.②若AE+CD=DE,求k.③設(shè)點(diǎn)F的坐標(biāo)為(a,b),當(dāng)△ODE為等腰三角形時(shí),求(a+b)2的值.22.(8分)已知一次函數(shù)圖象經(jīng)過和兩點(diǎn)(1)求此一次函數(shù)的解析式;(2)若點(diǎn)在函數(shù)圖象上,求的值.23.(8分)在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的坐標(biāo)分別是,,.(1)將繞點(diǎn)旋轉(zhuǎn),請畫出旋轉(zhuǎn)后對應(yīng)的;(2)將沿著某個(gè)方向平移一定的距離后得到,已知點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為,請畫出平移后的;(3)若與關(guān)于某一點(diǎn)中心對稱,則對稱中心的坐標(biāo)為_____.24.(8分)化簡求值:(1+)÷,其中x=﹣1.25.(10分)計(jì)算:(+)×26.(10分)如圖,中,且是的中點(diǎn)(1)求證:四邊形是平行四邊形。(2)求證:四邊形是菱形。(3)如果時(shí),求四邊形ADBE的面積(4)當(dāng)度時(shí),四邊形是正方形(不證明)
參考答案一、選擇題(每小題3分,共30分)1、D【解析】
連接CC′,AE,延長AE交CC′于F,由正方形性質(zhì)可證明△ADE≌△AEB′,所以DE=B′E,根據(jù)∠BAB′=30°可知∠DAE=∠EAB′=30°,即可求出DE的長度,進(jìn)而求出CE的長度,根據(jù)∠FEC=60°可知CF的長度,即可求出CC′的長度.【詳解】連接CC′,AE,延長AE交CC′于F,∵正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到AB′C′D′,∴AD=AB′,∠ADE=∠AB′E=90°,AE=AE,∴△ADE≌△AEB′,∴∠DAE=∠EAB′,∵旋轉(zhuǎn)角為30°,∴∠BAB′=30°,∴∠DAB′=60°,∴∠DAE=∠EAB′=30°,∴AE=2DE,∴AD2+DE2=(2DE)2,∴DE=,∴CE=1-,∵DE=EB′∴EC=EC′,∵∠DEA=∠AEB′=60°,∴∠FEC′=∠FEC=60°,∴∠FCE=30°,∴△FEC≌△FEC′,∴CF=FC′,∴EF⊥CC′,∴EF=CE=,∴CF==,∴CC′=2CF=,故選D.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),找出旋轉(zhuǎn)后的邊、角的對應(yīng)等量關(guān)系是解題關(guān)鍵.2、C【解析】試題分析:移項(xiàng)得,,兩邊同時(shí)除以2得,.故選C.考點(diǎn):解一元一次不等式.3、B【解析】
根據(jù)因式分解,原方程轉(zhuǎn)化為x=0或x-6=0,然后解兩個(gè)一次方程即可得答案.【詳解】解:x(x-6)=0,x=0或x-6=0,∴x1=0,x2=6,故選B.【點(diǎn)睛】本題考查了因式分解法解一元二次方程,熟練掌握解一元二次方程的解法是關(guān)鍵.4、A【解析】
比較方差的大小,即可判定方差最小的較為穩(wěn)定,即成績最穩(wěn)的是甲同學(xué).【詳解】∵甲、乙、丙、丁四人進(jìn)行射擊測試,每人10次射擊的平均成績恰好都是9.4環(huán),方差分別是0.43,1.13,0.90,1.68,∴,∴成績最穩(wěn)定的同學(xué)是甲.故選A.【點(diǎn)睛】此題主要考查利用方差,判定穩(wěn)定性,熟練掌握,即可解題.5、D【解析】
根據(jù)二次根式的加法、混合運(yùn)算以及二次根式的化簡等知識(shí)逐一進(jìn)行分析即可得.【詳解】A.+=2+3=5,故A選項(xiàng)錯(cuò)誤;B.=2,故B選項(xiàng)錯(cuò)誤;C.,故C選項(xiàng)錯(cuò)誤;D.,正確,故選D.【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算以及二次根式的化簡等知識(shí),熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.6、C【解析】
根據(jù)非負(fù)數(shù)的性質(zhì)列出方程,解出a、b、c的值后,再用勾股定理的逆定理進(jìn)行判斷.【詳解】解:根據(jù)題意,得a-2=0,b-=0,c-2=0,解得a=2,b=,c=2,∴a=c,又∵,∴∠B=90°,∴△ABC是等腰直角三角形.故選C.【點(diǎn)睛】本題考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,屬于基礎(chǔ)題型,解題的關(guān)鍵是熟悉非負(fù)數(shù)的性質(zhì),正確運(yùn)用勾股定理的逆定理.7、C【解析】
直接利用分式有意義的條件得出答案.【詳解】要使分式有意義,
則x-1≠0,
解得:x≠1.
故選:C.【點(diǎn)睛】此題考查分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.8、D【解析】
首先根據(jù)已知條件找出圖中的平行線段,然后根據(jù)兩組對邊分別平行的四邊形是平行四邊形,來判斷圖中平行四邊形的個(gè)數(shù).【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,CD∥AB,又∵EF∥BC,GH∥AB,∴∴AB∥GH∥CD,AD∥EF∥BC,∴平行四邊形有:□ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9個(gè).即共有9個(gè)平行四邊形.故選D.【點(diǎn)睛】本題考查平行四邊形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)已知條件找出圖中的平行線段.9、A【解析】
作CG⊥DF于點(diǎn)G,由平移的性質(zhì)可得AD=CF=2,∠ACB=∠F=30°,再由30°直角三角形的性質(zhì)即可求得CF的值.【詳解】如圖,作CG⊥DF于點(diǎn)G,由平移知,AD=CF=2,∠ACB=∠F=30°,∴CG=CF=1,即點(diǎn)C到DF的距離為1.故選A.【點(diǎn)睛】本題考查了平移的性質(zhì)及30°直角三角形的性質(zhì),正確作出輔助線,熟練利用平移的性質(zhì)及30°直角三角形的性質(zhì)是解決問題的關(guān)鍵.10、B【解析】
先把數(shù)據(jù)按大小排列,然后根據(jù)眾數(shù)的定義可得到答案.【詳解】數(shù)據(jù)按從小到大排列:3,4,4,5,5,5,6,6,7,數(shù)據(jù)5出現(xiàn)3次,次數(shù)最多,所以眾數(shù)是5.故選B.【點(diǎn)睛】此題考查眾數(shù),難度不大二、填空題(每小題3分,共24分)11、1.【解析】試題分析:連接CM,根據(jù)三角形中位線定理得到NM=12CB,MN∥BC,又CD=13BD,可得MN=CD,又由MN∥BC,可得四邊形DCMN是平行四邊形,所以DN=CM,根據(jù)直角三角形的性質(zhì)得到CM=考點(diǎn):三角形中位線定理;直角三角形斜邊上的中線;平行四邊形的判定與性質(zhì).12、1【解析】試題分析:由二次函數(shù)y=mx2-(2m-1)x+m的圖像頂點(diǎn)在y軸上知,該二次函數(shù)的對稱軸是直線x=0,根據(jù)二次函數(shù)對稱軸的公式x=-b-2m-1=0考點(diǎn):二次函數(shù)對稱軸點(diǎn)評:本題屬于簡單的公式應(yīng)用題,相對來說比較簡單,但是仍然要求學(xué)生對相應(yīng)的公式牢記并理解,注意公式中各字母表示的含義。13、甲【解析】試題分析:當(dāng)兩人的平均成績相同時(shí),如果方差越小則說明這個(gè)人的成績越穩(wěn)定.14、【解析】
根據(jù)題意得到的取值范圍是,則通過解關(guān)于的方程求得的值,由的取值范圍來求的取值范圍.【詳解】解:直線與軸的交點(diǎn)在、之間(包括、兩點(diǎn)),,令,則,解得,則,解得.故答案是:.【點(diǎn)睛】本題考查了一次函數(shù)圖象與系數(shù)的關(guān)系.根據(jù)一次函數(shù)解析式與一元一次方程的關(guān)系解得的值是解題的突破口.15、y=x+3【解析】因?yàn)橐淮魏瘮?shù)y=kx+3的圖象過點(diǎn)A(1,4),所以k+3=4,解得,k=1,所以,該一次函數(shù)的解析式是:y=x+3,故答案是:y=x+3【點(diǎn)睛】運(yùn)用了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.直線上任意一點(diǎn)的坐標(biāo)都滿足函數(shù)關(guān)系式y(tǒng)=kx+b(k≠0).16、32【解析】
在上截取,連接,根據(jù)、、、四點(diǎn)共圓,推出,證,推出,,得出等腰直角三角形,根據(jù)勾股定理求出,即可求出.由三角形面積公式即可求出Rt△ABC的面積.【詳解】解:在上截取,連接,四邊形是正方形,,,,、、、四點(diǎn)共圓,,在和中,,,,,,即是等腰直角三角形,由勾股定理得:,即.∴=4故答案為:32【點(diǎn)睛】本題主要考查對勾股定理,正方形的性質(zhì),直角三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的理解和掌握,利用旋轉(zhuǎn)模型構(gòu)造三角形全等和等腰直角三角形是解此題的關(guān)鍵.17、1.【解析】
延長BC,交x軸于點(diǎn)D,設(shè)點(diǎn)C(x,y),AB=a,由角平分線的性質(zhì)得,CD=CB′,則△OCD≌△OCB′,再由翻折的性質(zhì)得,BC=B′C,根據(jù)反比例函數(shù)的性質(zhì),可得出S△OCD=xy,則S△OCB′=xy,由AB∥x軸,得點(diǎn)A(x-a,1y),由題意得1y(x-a)=1,從而得出三角形ABC的面積等于ay,即可得出答案.【詳解】延長BC,交x軸于點(diǎn)D,設(shè)點(diǎn)C(x,y),AB=a,∵OC平分OA與x軸正半軸的夾角,∴CD=CB′,△OCD≌△OCB′,再由翻折的性質(zhì)得,BC=B′C,∵雙曲線
(x>0)經(jīng)過四邊形OABC的頂點(diǎn)A.
C,∴S△OCD=xy=1,∴S△OCB′=xy=1,由翻折變換的性質(zhì)和角平分線上的點(diǎn)到角的兩邊的距離相等可得BC=B′C=CD,∴點(diǎn)A.
B的縱坐標(biāo)都是1y,∵AB∥x軸,∴點(diǎn)A(x?a,1y),∴1y(x?a)=1,∴xy?ay=1,∵xy=1∴ay=1,∴S△ABC=ay=,∴SOABC=S△OCB′+S△AB′C+S△ABC=1++=1.故答案為:1.18、.【解析】試題分析:原式=.考點(diǎn):二次根式的乘除法.三、解答題(共66分)19、(1)9;(2)OC⊥直線于點(diǎn)C;①;②;(3)【解析】
(1)求出線段MN的長度,根據(jù)正方形的面積公式即可求出答案;(2)根據(jù)面積求出,根據(jù)面積最小確定OC⊥直線于點(diǎn)C,再分情況分別求出b;(3)分兩種情況:當(dāng)點(diǎn)E在直線y=-x-2是上方和下方時(shí),分別求出點(diǎn)P的坐標(biāo),由此得到答案.【詳解】解:(1)∵M(jìn)(0,1),N(3,1),∴MN∥x軸,MN=3,∴點(diǎn)M,N的“確定正方形”的面積為,故答案為:9;(2)∵點(diǎn)O,C的“確定正方形”面積為2,∴.∵點(diǎn)O,C的“確定正方形”面積最小,∴OC⊥直線于點(diǎn)C.①當(dāng)b>0時(shí),如圖可知OM=ON,△MON為等腰直角三角形,可求,∴②當(dāng)時(shí),同理可求∴(3)如圖2中,當(dāng)正方形ABCD在直線y=-x-2的下方時(shí),延長DB交直線y=-x-2于H,∴BH⊥直線y=-x-2,當(dāng)BH=時(shí),點(diǎn)E、F的“確定正方形”的面積的最小值是2,此時(shí)P(-6,0);如圖3中,當(dāng)正方形ABCD在直線y=-x-2的上方時(shí),延長DB交直線y=-x-2于H,∴BH⊥直線y=-x-2,當(dāng)BH=時(shí),點(diǎn)E、F的“確定正方形”的面積的最小值是2,此時(shí)P(2,0),觀察圖象可知:當(dāng)或時(shí),所有點(diǎn)E、F的“確定正方形”的面積都不小于2【點(diǎn)睛】此題是一次函數(shù)的綜合題,考查一次函數(shù)的性質(zhì),正方形的性質(zhì),正確理解題中的正方形的特點(diǎn)畫出圖象求解是解題的關(guān)鍵.20、14cm1【解析】
連接AC,利用勾股定理求出AC的長,在△ABC中,判斷它的形狀,并求出它的面積,最后求出四邊形ABCD的面積.【詳解】解:連接AC,
∵AD=4cm,CD=3cm,∠ADC=90°,
∴AC===5(cm)
∴S△ACD=CD?AD=6(cm1).
在△ABC中,∵51+111=131即AC1+BC1=AB1,
∴△ABC為直角三角形,即∠ACB=90°,
∴S△ABC=AC?BC=30(cm1).
∴S四邊形ABCD=S△ABC-S△ACD
=30-6=14(cm1).
答:四邊形ABCD的面積為14cm1.【點(diǎn)睛】本題考查了勾股定理、勾股定理的逆定理及三角形的面積公式.掌握勾股定理及其逆定理,連接AC,說明△ABC是直角三角形是解決本題的關(guān)鍵.21、(1)OF=4;(2)①證明見解析;②k=;③96-16或36-4.【解析】
分析(1)由y=經(jīng)過點(diǎn)B(2,4).,求出k的值,再利用F在直線y=x,求出m的值,最后利用勾股定理求解即可;(2)①利用反比例函數(shù)k的幾何意義可求解;②Rt△EBD中,分別用n表示出BD、BE、DE,再利用勾股定理解答即可;③分三種情況討論即可:OE=OD;OE=DE;OD=DE.詳解:(1)∵F在直線y=x上∴設(shè)F(m,m)作FM⊥x軸∴FM=OM=m∵y=經(jīng)過點(diǎn)B(2,4).∴k=8∴∴∴∴OF=4;(2)①∵函數(shù)的圖象經(jīng)過點(diǎn)D,E∴,∵OC=2,OA=4∴CO=2AE②由①得:CD=2AE∴可設(shè):CD=2n,AE=n∴DE=CD+AE=3nBD=4-2n,BE=2-n在Rt△EBD,由勾股定理得:∴解得③CD=2c,AE=c情況一:若OD=DE∴∴∴情況二:若OE=DE∴∴情況三:OE=OD不存在.點(diǎn)睛:本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的解析式求點(diǎn)的坐標(biāo),利用勾股定理得到方程,進(jìn)而求出線段的長,注意解題時(shí)分類討論的思想應(yīng)用.22、(1)(2)【解析】
(1)用待定系數(shù)法,設(shè)函數(shù)解析式為y=kx+b,將兩點(diǎn)代入可求出k和b的值,進(jìn)而可得出答案.
(2)將點(diǎn)(m,2)代入可得關(guān)于m的方程,解出即可.【詳解】解:(1)設(shè)一次函數(shù)的解析式為,則有,解得:,一次函數(shù)的解析式為;(2)點(diǎn)在一次函數(shù)圖象上,.【點(diǎn)睛】本題考查待定系數(shù)法求一次函數(shù)解析式和一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是熟練掌握待定系數(shù)法求一次函數(shù)解析式.23、(1)見解析;(2)見解析;(3)【解析】
(1)延長BC到B1使B1C=BC,延長AC到A1使A1C=AC,從而得到△A1B1C1;
(2)利用點(diǎn)A1和A2的坐標(biāo)特征得到平移的規(guī)律,然后描點(diǎn)得到△A2B2C2;
(3)利用關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征進(jìn)行判斷.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2,如圖所示;(3)∵,,,,,∴與關(guān)于原點(diǎn)對,對稱中心坐標(biāo)為,【點(diǎn)睛】本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教材解析水利水電工程試題及答案
- 五年級(jí)心理健康成長教育
- 物理學(xué)原理在工程中的應(yīng)用知識(shí)集萃
- 高爾夫運(yùn)動(dòng)基礎(chǔ)技能培訓(xùn)指南
- 教育科技產(chǎn)品研發(fā)合同
- 探索市政工程考試領(lǐng)域的試題及答案
- 企業(yè)臨時(shí)用工勞動(dòng)合同
- 經(jīng)濟(jì)師中級(jí)考試重要試題及答案提醒
- 物理實(shí)驗(yàn)答辯報(bào)告設(shè)計(jì)規(guī)范
- 學(xué)習(xí)“鑄牢中華民族共同體意識(shí)”應(yīng)知應(yīng)會(huì)知識(shí)競賽測試題庫
- 私人建房委托協(xié)議書
- 基于大數(shù)據(jù)的新興市場機(jī)器人應(yīng)用模式研究-洞察闡釋
- 《艾薩克·牛頓》課件
- 抱負(fù)與使命主題作文導(dǎo)寫-2024-2025學(xué)年高一語文單元寫作深度指導(dǎo)(統(tǒng)編版必修下冊)
- 福建省莆田市2025屆高中畢業(yè)班高三年級(jí)第四次教學(xué)質(zhì)量檢測試卷物理及答案(莆田四檢)
- 貨物裝卸倉儲(chǔ)合同協(xié)議
- 2024年四川省寧南縣事業(yè)單位公開招聘醫(yī)療衛(wèi)生崗筆試題帶答案
- 初中數(shù)學(xué)融入課程思政的路徑探索
- 銀行資產(chǎn)負(fù)債管理試題及答案
- 壓力容器安全教育培訓(xùn)
- 托管機(jī)構(gòu)管理制度
評論
0/150
提交評論