江蘇省常州市教育會業(yè)水平監(jiān)測2024屆數(shù)學(xué)八年級下冊期末統(tǒng)考模擬試題含解析_第1頁
江蘇省常州市教育會業(yè)水平監(jiān)測2024屆數(shù)學(xué)八年級下冊期末統(tǒng)考模擬試題含解析_第2頁
江蘇省常州市教育會業(yè)水平監(jiān)測2024屆數(shù)學(xué)八年級下冊期末統(tǒng)考模擬試題含解析_第3頁
江蘇省常州市教育會業(yè)水平監(jiān)測2024屆數(shù)學(xué)八年級下冊期末統(tǒng)考模擬試題含解析_第4頁
江蘇省常州市教育會業(yè)水平監(jiān)測2024屆數(shù)學(xué)八年級下冊期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省常州市教育會業(yè)水平監(jiān)測2024屆數(shù)學(xué)八年級下冊期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在菱形ABCD中,∠A=60°,AD=4,點P是AB邊上的一個動點,點E、F分別是DP、BP的中點,則線段EF的長為()A.2 B.4 C. D.2.如圖,菱形ABCD中,AC交BD于點O,于點E,連接OE,若,則()A.20° B.30° C.40° D.50°3.如圖,在平行四邊形ABCD中,F(xiàn),G分別為CD,AD的中點,BF=2,BG=3,,則BC的長度為()A. B. C.2.5 D.4.如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E且AB=AE,延長AB與DE的延長線相交于點F,連接AC、CF.下列結(jié)論:①△ABC≌△EAD;②△ABE是等邊三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正確的有()A.2個 B.3個 C.4個 D.5個5.如圖所示,等邊三角形沿射線向右平移到的位置,連接、,則下列結(jié)論:(1)(2)與互相平分(3)四邊形是菱形(4),其中正確的個數(shù)是()A.1 B.2 C.3 D.46.兩組數(shù)據(jù):98,99,99,100和98.5,99,99,99.5,則關(guān)于以下統(tǒng)計量說法不正確的是()A.平均數(shù)相等B.中位數(shù)相等C.眾數(shù)相等D.方差相等7.下列根式中,屬于最簡二次根式的是()A.- B. C. D.8.在中,,,,則的長是()A.4 B. C.6 D.9.已知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,則一次函數(shù)y=kx﹣k的圖象可能是下圖中的()A. B. C. D.10.在直線l上依次擺放著七個正方形(如圖所示).已知斜放置的三個正方形的面積分別是1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4,則S1+S2+S3+S4的值為()A.6 B.5 C.4 D.311.在正方形中,是邊上一點,若,且點與點不重合,則的長可以是()A.3 B.4 C.5 D.612.如圖,中俄“海上聯(lián)合—2017”軍事演習(xí)在海上編隊演習(xí)中,兩艘航母護(hù)衛(wèi)艦從同一港口O同時出發(fā),一號艦沿南偏西30°方向以12海里/小時的速度航行,二號艦以16海里/小時速度航行,離開港口1.5小時后它們分別到達(dá)A,B兩點,相距30海里,則二號艦航行的方向是()A.南偏東30° B.北偏東30° C.南偏東60° D.南偏西60°二、填空題(每題4分,共24分)13.一次函數(shù)不經(jīng)過第三象限,則k的取值范圍是______14.方程x2=2x的解是__________.15.若實數(shù)a、b滿足a+b=5,a2b+ab2=-10,則ab的值是_______.16.如圖,正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,若F是BC的中點,且∠EDF=45°,則BE的長為_______.17.已知一次函數(shù)y=ax+b的圖象經(jīng)過點(﹣2,0)和點(0,﹣1),則不等式ax+b>0的解集是_____.18.已知關(guān)于x的方程2x+m=x﹣3的根是正數(shù),則m的取值范圍是_____.三、解答題(共78分)19.(8分)選用適當(dāng)?shù)姆椒ǎ庀铝蟹匠蹋海?)2x(x﹣2)=x﹣3;(2)(x﹣2)2=3x﹣620.(8分)(知識鏈接)連結(jié)三角形兩邊中點的線段,叫做三角形的中位線.(動手操作)小明同學(xué)在探究證明中位線性質(zhì)定理時,是沿著中位線將三角形剪開然后將它們無縫隙、無重疊的拼在一起構(gòu)成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來證明.請你幫他完成解題過程(要求:畫出圖形,根據(jù)圖形寫出已知、求證和證明過程).21.(8分)如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,的三個頂點坐標(biāo)分別為,,,與關(guān)于原點對稱.(1)寫出點、、的坐標(biāo),并在右圖中畫出;(2)求的面積.22.(10分)如圖所示,已知直線L過點A(0,1)和B(1,0),P是x軸正半軸上的動點,OP的垂直平分線交L于點Q,交x軸于點M.(1)直接寫出直線L的解析式;(2)設(shè)OP=t,△OPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;并求出當(dāng)0<t<2時,S的最大值;(3)直線L1過點A且與x軸平行,問在L1上是否存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形?若存在,求出點C的坐標(biāo),并證明;若不存在,請說明理由.23.(10分)如圖,四邊形ABCD中,AB=AD,CB=CD,AB∥CD.(1)求證:四邊形ABCD是菱形.(2)當(dāng)△ABD滿足什么條件時,四邊形ABCD是正方形.(直接寫出一個符合要求的條件).(3)對角線AC和BD交于點O,∠ADC=120°,AC=8,P為對角線AC上的一個動點,連接DP,將DP繞點D逆時針方向旋轉(zhuǎn)120°得到線段DP1,直接寫出AP1的取值范圍.24.(10分)某商家預(yù)測“華為P30”手機能暢銷,就用1600元購進(jìn)一批該型號手機殼,面市后果然供不應(yīng)求,又購進(jìn)6000元的同種型號手機殼,第二批所購買手機殼的數(shù)量是第一批的3倍,但進(jìn)貨單價比第一批貴了2元.(1)第一批手機殼的進(jìn)貨單價是多少元?(2)若兩次購進(jìn)于機殼按同一價格銷售,全部傳完后,為使得獲利不少于2000元,那么銷售單價至少為多少?25.(12分)如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+b與x軸、y軸相交于A、B兩點,動點C(m,0)在線段OA上,將線段CB繞著點C順時針旋轉(zhuǎn)90°得到CD,此時點D恰好落在直線AB上,過點D作DE⊥x軸于點E.(1)求m和b的數(shù)量關(guān)系;(2)當(dāng)m=1時,如圖2,將△BCD沿x軸正方向平移得△B′C′D′,當(dāng)直線B′C′經(jīng)過點D時,求點B′的坐標(biāo)及△BCD平移的距離;(3)在(2)的條件下,直線AB上是否存在一點P,以P、C、D為頂點的三角形是等腰直角三角形?若存在,寫出滿足條件的P點坐標(biāo);若不存在,請說明理由.26.如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DE,連接CE、AF(1)證明:AF=CE;(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【解析】【分析】連接BD,利用菱形性質(zhì)和三角形中位線性質(zhì)可解得.【詳解】連接BD,因為,四邊形ABCD是菱形,所以,AB=AD=4,又因為∠A=60°,所以,三角形ABD是等邊三角形.所以,BD=AB=AD=4因為,E,F是DP、BP的中點,所以,EF是三角形ABD的中位線,所以,EF=BD=2故選A【點睛】本題考核知識點:菱形,三角形中位線.解題關(guān)鍵點:理解菱形,三角形中位線性質(zhì).2、A【解析】

根據(jù)直角三角形的斜邊中線性質(zhì)可得OE=OB=OD,根據(jù)菱形性質(zhì)可得∠DBE=∠ABC=70°,從而得到∠OEB度數(shù),再依據(jù)∠OED=90°-∠OEB即可.【詳解】解:∵四邊形ABCD是菱形,∴O為BD中點,∠DBE=∠ABC=70°,∵DE⊥BC,∴在Rt△BDE中,OE=OB=OD,∴∠OEB=∠OBE=70°,∴∠OED=90°-70°=20°,故選A.【點睛】本題主要考查了菱形的性質(zhì)、直角三角形斜邊中線的性質(zhì),解決這類問題的方法是四邊形轉(zhuǎn)化為三角形.3、A【解析】

延長AD、BF交于E,過點E作EM⊥BG,根據(jù)F是中點得到△CBF≌△DEF,得到BE=2BF=4,根據(jù)得到BM=BE=2,ME=2,故MG=1,再根據(jù)勾股定理求出EG的長,再得到DE的長即可求解.【詳解】延長AD、BF交于E,∵F是中點,∴CF=DF,又AD∥BC,∴∠CBF=∠DEF,又∠CFB=∠DFE,∴△CBF≌△DEF,∴BE=2BF=4,過點E作EM⊥BG,∵,∴∠BEM=30°,∴BM=BE=2,ME=2,∴MG=BG-BM=1,在Rt△EMG中,EG==∵G為AD中點,∴DG=AD=DE,∴DE==,故BC=,故選A.【點睛】此題主要考查平行四邊形的線段求解,解題的關(guān)鍵是熟知全等三角形的判定及勾股定理的運用.4、B【解析】

根據(jù)平行四邊形的性質(zhì)可得AD//BC,AD=BC,根據(jù)平行線的性質(zhì)可得∠BEA=∠EAD,根據(jù)等腰三角形的性質(zhì)可得∠ABE=∠BEA,即可證明∠EAD=∠ABE,利用SAS可證明△ABC≌△EAD;可得①正確;由角平分線的定義可得∠BAE=∠EAD,即可證明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正確;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正確;題中③和④不正確.綜上即可得答案.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS);故①正確;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等邊三角形;②正確;∴∠ABE=∠EAD=60°,∵△FCD與△ABC等底(AB=CD)等高(AB與CD間的距離相等),∴S△FCD=S△ABC,∵△AEC與△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正確.若AD=BF,則BF=BC,題中未限定這一條件,∴③不一定正確;如圖,過點E作EH⊥AB于H,過點A作AG⊥BC于G,∵△ABE是等邊三角形,∴AG=EH,若S△BEF=S△ABC,則BF=BC,題中未限定這一條件,∴④不一定正確;綜上所述:正確的有①②⑤.故選:B.【點睛】本題考查平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握等底、等高的三角形面積相等的性質(zhì)是解題關(guān)鍵.5、D【解析】

先求出∠ACD=60°,繼而可判斷△ACD是等邊三角形,從而可判斷①是正確的;根據(jù)①的結(jié)論,可判斷四邊形ABCD是平行四邊形,從而可判斷②是正確的;再結(jié)合①的結(jié)論,可判斷③正確;根據(jù)菱形的對角線互相垂直可得AC⊥BD,再根據(jù)平移后對應(yīng)線段互相平行可得∠BDE=∠COD=90°,進(jìn)而判斷④正確.【詳解】解:如圖:∵△ABC,△DCE是等邊三角形∴∠ACB=∠DCE=60°,AC=CD∴∠ACD=180°-∠ACB-∠DCE=60°∴△ACD是等邊三角形∴AD=AC=BC,故①正確;由①可得AD=BC∵AB=CD∴四邊形ABCD是平行四邊形,∴BD、AC互相平分,故②正確;由①可得AD=AC=CE=DE故四邊形ACED是菱形,即③正確∵四邊形ABCD是平行四邊形,BA=BC∴.四邊形ABCD是菱形∴AC⊥BD,AC//DE∴∠BDE=∠COD=90°∴BD⊥DE,故④正確綜上可得①②③④正確,共4個.故選:D【點睛】此題主要考查了菱形的判定與性質(zhì),以及平移的性質(zhì),關(guān)鍵是掌握菱形四邊相等,對角線互相垂直.6、D【解析】

根據(jù)平均數(shù)的計算公式、眾數(shù)和中位數(shù)的概念以及方差的計算公式計算,判斷即可.【詳解】14(98+99+99+100)=99,14(98.5+99+99+99.5)=99,平均數(shù)相等,兩組數(shù)據(jù):98,99,99,100和98.5,99,99,99.5的中位數(shù)都是99,眾數(shù)是99,則中位數(shù)相等,眾數(shù)相等,B、C不合題意;14[(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2]=12,14[(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)故選D.【點睛】本題考查了平均數(shù)、眾數(shù)、中位數(shù)和方差,掌握它們的概念以及計算公式是解題的關(guān)鍵.7、B【解析】試題解析:A、被開方數(shù)含分母,故A錯誤;B、被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故B正確;C、被開方數(shù)含能開得盡方的因數(shù)或因式,故C錯誤;D、被開方數(shù)含能開得盡方的因數(shù)或因式,故D錯誤;故選B.考點:最簡二次根式.8、C【解析】

根據(jù)勾股定理計算即可.【詳解】解:∵在Rt△ABC中,∠C=90°,a=8,c=10,∴b==6,故選C.【點睛】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.9、D【解析】

根據(jù)正比例函數(shù)的圖象經(jīng)過第一,三象限可得:,因此在一次函數(shù)中,,根據(jù)直線傾斜方向向右上方,直線與y軸的交點在y軸負(fù)半軸,畫出圖象即可求解.【詳解】根據(jù)正比例函數(shù)的圖象經(jīng)過第一,三象限可得:所以,所以一次函數(shù)中,,所以一次函數(shù)圖象經(jīng)過一,三,四象限,故選D.【點睛】本題主要考查一次函數(shù)圖象象限分布性質(zhì),解決本題的關(guān)鍵是要熟練掌握一次函數(shù)圖象圖象的象限分布性質(zhì).10、C【解析】由勾股定理的幾何意義可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故選A.11、B【解析】

且根據(jù)E為BC邊上一點(E與點B不重合),可得當(dāng)E與點C重合時AE最長,求出AC即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴AB=BC=3,AC=,又∵E為BC邊上一點,E與點B不重合,∴當(dāng)E與點C重合時AE最長,則3<AE≤,故選:B.【點睛】本題考查全正方形的性質(zhì)和勾股定理,求出當(dāng)E與點C重合時AE最長是解題的關(guān)鍵.12、C【解析】【分析】由題意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,結(jié)合方位角即可確定出二號艦的航行方向.【詳解】如圖,由題意得:OA=12×1.5=18,OB=16×1.5=24,∵AB=30,∴OA2+OB2=182+242=900=302=AB2,∴∠AOB=90°,∵∠AOC=30°,∴∠BOC=∠AOB-∠AOC=60°,∴二號艦航行的方向是南偏東60°,故選C.【點睛】本題考查了方位角、勾股定理逆定理,熟練掌握勾股定理逆定理是解本題的關(guān)鍵.二、填空題(每題4分,共24分)13、【解析】

根據(jù)圖象在坐標(biāo)平面內(nèi)的位置關(guān)系確定k的取值范圍,從而求解.【詳解】解:∵一次函數(shù)y=kx+2的圖象不經(jīng)過第三象限,∴一次函數(shù)y=kx+2的圖象經(jīng)過第一、二、四象限,∴k<1.故答案為:k<1.【點睛】本題主要考查一次函數(shù)圖象在坐標(biāo)平面內(nèi)的位置與k、b的關(guān)系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關(guān)系.k>1時,直線必經(jīng)過一、三象限;k<1時,直線必經(jīng)過二、四象限.b>1時,直線與y軸正半軸相交;b=1時,直線過原點;b<1時,直線與y軸負(fù)半軸相交.14、x1=0,x2=2【解析】

利用因式分解法解方程即可得到答案.【詳解】解:原方程化為:所以:所以:或解得:故答案為:【點睛】本題考查的是一元二次方程的解法,熟練掌握一元二次方程的解法是關(guān)鍵.15、-1【解析】

先提取公因式ab,整理后再把a+b的值代入計算即可.【詳解】解:a+b=5時,原式=ab(a+b)=5ab=-10,解得:ab=-1.故答案為:-1.【點睛】本題考查了提公因式法分解因式,提取公因式后整理成已知條件的形式是解本題的關(guān)鍵,也是難點.16、4【解析】

延長F至G,使CG=AE,連接DG,由SAS證明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再證明△EDF≌△GDF,得出EF=GF,設(shè)AE=CG=x,則EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,從而求得BE的長即可.【詳解】解:延長F至G,使CG=AE,連接DG、EF,如圖所示:∵四邊形ABCD是正方形,∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,∴∠DCG=90°,在△ADE和△CDG中,AE=CG∠A=∠DCG=∴△ADE≌△CDG(SAS),∴DE=DG,∠ADE=∠CDG,∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,∵∠EDF=45°,∴∠GDF=45°,在△EDF和△GDF中,DE=DG∠EDF=∠GDF∴△EDF≌△GDF(SAS),∴EF=GF,∵F是BC的中點,∴BF=CF=3,設(shè)AE=CG=x,則EF=GF=CF+CG=3+x,在Rt△BEF中,由勾股定理得:32解得:x=2,即AE=2,∴BE=AB-AE=6-2=4.【點睛】此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì)以及勾股定理,利用了方程的思想,證明三角形全等是解本題的關(guān)鍵.17、x<﹣2【解析】

根據(jù)點A和點B的坐標(biāo)得到一次函數(shù)圖象經(jīng)過第二、三、四象限,根據(jù)函數(shù)圖象得到當(dāng)x>-2時,圖象在x軸上方,即y>1.【詳解】解:∵一次函數(shù)y=ax+b的圖象經(jīng)過(-2,1)和點(1,-1),∴一次函數(shù)圖象經(jīng)過第二、三、四象限,∴當(dāng)x<-2時,y>1,即ax+b>1,∴關(guān)于x的不等式ax+b<1的解集為x<-2.故答案為:x<-2.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)1的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標(biāo)所構(gòu)成的集合.18、m<﹣1【解析】

根據(jù)關(guān)于x的方程2x+m=x﹣1的根是正數(shù),可以求得m的取值范圍.【詳解】解:由方程2x+m=x﹣1,得x=﹣m﹣1,∵關(guān)于x的方程2x+m=x﹣1的根是正數(shù),∴﹣m﹣1>0,解得,m<﹣1,故答案為:m<﹣1.【點睛】本題考查解一元一次方程和一元一次不等式,解答本題的關(guān)鍵是明確題意,求出m的取值范圍.三、解答題(共78分)19、(1)x=1或x=(2)x1=2,x2=1.【解析】試題分析:(1)先化為一般式,再分解因式即可求解;(2)先移項后,提取公因式分解因式,即可求解.試題解析:(1)2x(x﹣2)=x﹣3,2x2﹣1x+3=0,(x-1)(2x-3)=0,x-1=0或2x-3=0,x=1或x=;(2)(x﹣2)2=3x﹣6,(x﹣2)2-3(x﹣2)=0,(x﹣2)(x﹣2-3)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.20、見解析【解析】

作出圖形,然后寫出已知、求證,延長DE到F,使DE=EF,證明△ADE和△CEF全等,根據(jù)全等三角形對應(yīng)邊相等可得AD=CF,全等三角形對應(yīng)角相等可得∠F=∠ADE,再求出BD=CF,根據(jù)內(nèi)錯角相等,兩直線平行判斷出AB∥CF,然后判斷出四邊形BCFD是平行四邊形,根據(jù)平行四邊形的性質(zhì)證明結(jié)論.【詳解】解:已知:如圖所示,在△ABC中,D、E分別是AB、AC的中點,求證:DE=BC,DE∥BC,證明:延長DE到F,使DE=EF,連接CF,∵點E是AC的中點,∴AE=CE,在△ADE和△CEF中,,∴△ADE≌△CEF(SAS),∴AD=CF,∠ADE=∠F,∴AB∥CF,∵點D是AB的中點,∴AD=BD,∴BD=CF,∴BD∥CF,∴四邊形BCFD是平行四邊形,∴DF∥BC,DF=BC,∴DE∥BC且DE=BC.【點睛】本題考查的是三角形中位線定理的證明、平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.21、(1)、、,作圖見解析;(2)6【解析】

(1)利用關(guān)于原點對稱的點的坐標(biāo)特征寫出點A1、B1、C1的坐標(biāo),然后描點即可得到△A1B1C1;(2)利用三角形面積公式計算.【詳解】解:(1)如圖,△A1B1C1為所作,∴、、;(2);【點睛】本題考查三角形的面積計算,難度不大,解決本題的關(guān)鍵是正確掌握關(guān)于原點對稱的點的坐標(biāo)的特點.22、(1)y=1﹣x;(2),S有最大值;(3)存在點C(1,1).【解析】

(1)已知直線L過A,B兩點,可將兩點的坐標(biāo)代入直線的解析式中,用待定系數(shù)法求出直線L的解析式;(2)求三角形OPQ的面積,就需知道底邊OP和高QM的長,已知了OP為t,關(guān)鍵是求出QM的長.已知了QM垂直平分OP,那么OM=t,然后要分情況討論:①當(dāng)OM<OB時,即0<t<2時,BM=OB﹣OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根據(jù)三角形的面積公式得出S與t的函數(shù)關(guān)系式;②當(dāng)OM>OB時,即當(dāng)t≥2時,BM=OM﹣OB,然后根據(jù)①的方法即可得出S與t的函數(shù)關(guān)系式,然后可根據(jù)0<t<2時的函數(shù)的性質(zhì)求出S的最大值;(3)如果存在這樣的點C,那么CQ=QP=OQ,因此C,O就關(guān)于直線BL對稱,因此C的坐標(biāo)應(yīng)該是(1,1).那么只需證明CQ⊥PQ即可.分三種情況進(jìn)行討論:①當(dāng)Q在線段AB上(Q,B不重合),且P在線段OB上時.要證∠CQP=90°,那么在四邊形CQPB中,就需先證出∠QCB與∠QPB互補,由于∠QPB與∠QPO互補,而∠QPO=∠QOP,因此只需證∠QCB=∠QOB即可,根據(jù)折疊的性質(zhì),這兩個角相等,由此可得證;②當(dāng)Q在線段AB上,P在OB的延長線上時,根據(jù)①已得出∠QPB=∠QCB,那么這兩個角都加上一個相等的對頂角后即可得出∠CQP=∠CBP=90度;③當(dāng)Q與B重合時,很顯然,三角形CQP應(yīng)該是個等腰直角三角形.綜上所述即可得出符合條件C點的坐標(biāo).【詳解】(1)y=1﹣x;(2)∵OP=t,∴Q點的橫坐標(biāo)為t,①當(dāng),即0<t<2時,QM=1-t,∴S△OPQ=t(1﹣t),②當(dāng)t≥2時,QM=|1﹣t|=t﹣1,∴S△OPQ=t(t﹣1),∴當(dāng)0<t<1,即0<t<2時,S=t(1﹣t)=﹣(t﹣1)2+,∴當(dāng)t=1時,S有最大值;(3)由OA=OB=1,故△OAB是等腰直角三角形,若在L1上存在點C,使得△CPQ是以Q為直角頂點的等腰直角三角形,則PQ=QC,所以O(shè)Q=QC,又L1∥x軸,則C,O兩點關(guān)于直線L對稱,所以AC=OA=1,得C(1,1).下面證∠PQC=90度.連CB,則四邊形OACB是正方形.①當(dāng)點P在線段OB上,Q在線段AB上(Q與B、C不重合)時,如圖﹣1,由對稱性,得∠BCQ=∠QOP,∠QPO=∠QOP,∴∠QPB+∠QCB=∠QPB+∠QPO=180°,∴∠PQC=360°﹣(∠QPB+∠QCB+∠PBC)=90度;②當(dāng)點P在線段OB的延長線上,Q在線段AB上時,如圖﹣2,如圖﹣3∵∠QPB=∠QCB,∠1=∠2,∴∠PQC=∠PBC=90度;③當(dāng)點Q與點B重合時,顯然∠PQC=90度,綜合①②③,∠PQC=90度,∴在L1上存在點C(1,1),使得△CPQ是以Q為直角頂點的等腰直角三角形.【點睛】本題結(jié)合了三角形的相關(guān)知識考查了一次函數(shù)及二次函數(shù)的應(yīng)用,要注意的是(2)中為保證線段的長度不為負(fù)數(shù)要分情況進(jìn)行求解.(3)中由于Q,P點的位置不確定,因此要分類進(jìn)行討論不要漏解.23、(1)見解析;(2)見解析;(3).【解析】分析:(1)先證明四邊形ABCD是平行四邊形,然后證明它是菱形即可.(2)由(1)已知四邊形ABCD是菱形,所以當(dāng)△ABD是直角三角形時,四邊形ABCD是正方形.(3)將線段AC順時針方向旋轉(zhuǎn)60°得到線段CE,并連接AE,點到直線的距離垂線段最短,所以AP1垂直CE時,AP1取最小值,點P1在E點,AP1取最大值,即可求解.詳解:證明:(1)AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,∴AD∥BC,∴四邊形ABCD是平行四邊形.又∵AB=AD,∴四邊形ABCD是菱形.(2)要使四邊形ABCD是正方形,則∠A=∠ABC=∠C=∠ADC=90°,∴當(dāng)△ABD是直角三角形時,即∠BAD=90°時,四邊形ABCD是正方形;(3)以點C為中心,將線段AC順時針方向旋轉(zhuǎn)60°得到線段CE,由題意可知,點P1在線段CE上運動.連接AE,∵AC=CE,∠ACE=60°,∴△ACE為等邊三角形,∴AC=CE=AE=8,過點A作于點F,∴.當(dāng)點P1在點F時,線段AP1最短,此時;.當(dāng)點P1在點E時,線段AP1最長,此時AP1=8,..點睛:本題主要考查了菱形的判定和正方形的判定,結(jié)合題意認(rèn)真分析是解題的關(guān)鍵.24、(1)8元;(2)1元.【解析】

(1)設(shè)第一批手機殼進(jìn)貨單價為x元,則第二批手機殼進(jìn)貨單價為(x+2)元,根據(jù)單價=總價÷單價,結(jié)合第二批手機殼的數(shù)量是第一批的3倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;

(2)設(shè)銷售單價為m元,根據(jù)獲利不少于2000元,即可得出關(guān)于m的一元一次不等式,解之取其最小值即可得出結(jié)論.【詳解】解:(1)設(shè)第一批手機殼進(jìn)貨單價為x元,

根據(jù)題意得:3?=,

解得:x=8,

經(jīng)檢驗,x=8是分式方程的解.

答:第一批手機殼的進(jìn)貨單價是8元;

(2)設(shè)銷售單價為m元,

根據(jù)題意得:200(m-8)+600(m-10)≥2000,

解得:m≥1.

答:銷售單價至少為1元.【點睛】本題考查分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論