2021-2023年全國(guó)高考數(shù)學(xué)典例真題匯編(新高考模式訓(xùn)練)7_第1頁(yè)
2021-2023年全國(guó)高考數(shù)學(xué)典例真題匯編(新高考模式訓(xùn)練)7_第2頁(yè)
2021-2023年全國(guó)高考數(shù)學(xué)典例真題匯編(新高考模式訓(xùn)練)7_第3頁(yè)
2021-2023年全國(guó)高考數(shù)學(xué)典例真題匯編(新高考模式訓(xùn)練)7_第4頁(yè)
2021-2023年全國(guó)高考數(shù)學(xué)典例真題匯編(新高考模式訓(xùn)練)7_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試卷第1頁(yè),共SECTIONPAGES1頁(yè)2021-2023年全國(guó)高考數(shù)學(xué)典例真題匯編(新高考模式訓(xùn)練)7姓名:___________班級(jí):___________一.單選題1.【2023-新課標(biāo)全國(guó)Ⅰ卷真題】已知,則()A. B. C.0 D.12.【2021-全國(guó)新高II卷】設(shè)集合,則()A. B. C. D.3.【2021-新高考Ⅰ卷】已知,則()A. B. C. D.4.【2022-北京數(shù)學(xué)高考真題】設(shè)是公差不為0的無(wú)窮等差數(shù)列,則“為遞增數(shù)列”是“存在正整數(shù),當(dāng)時(shí),”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.【2023-北京數(shù)學(xué)乙卷高考真題】的展開(kāi)式中的系數(shù)為().A. B. C.40 D.806.【2021-全國(guó)甲卷(理)】2020年12月8日,中國(guó)和尼泊爾聯(lián)合公布珠穆朗瑪峰最新高程為8848.86(單位:m),三角高程測(cè)量法是珠峰高程測(cè)量方法之一.如圖是三角高程測(cè)量法的一個(gè)示意圖,現(xiàn)有A,B,C三點(diǎn),且A,B,C在同一水平面上的投影滿足,.由C點(diǎn)測(cè)得B點(diǎn)的仰角為,與的差為100;由B點(diǎn)測(cè)得A點(diǎn)的仰角為,則A,C兩點(diǎn)到水平面的高度差約為()()A.346 B.373 C.446 D.4737.【2021-新高考Ⅰ卷】若,則()A. B. C. D.8.【2022-全國(guó)甲卷數(shù)學(xué)高考真題】設(shè)函數(shù)在區(qū)間恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.二.多選題9.【2021-全國(guó)新高II卷】下列統(tǒng)計(jì)量中,能度量樣本的離散程度的是()A.樣本的標(biāo)準(zhǔn)差 B.樣本的中位數(shù)C.樣本的極差 D.樣本的平均數(shù)10.【2021-全國(guó)新高II卷】如圖,在正方體中,O為底面的中心,P為所在棱的中點(diǎn),M,N為正方體的頂點(diǎn).則滿足的是()A. B.C. D.11.【2021-全國(guó)新高II卷】設(shè)正整數(shù),其中,記.則()A. B.C. D.三.填空題12.【2022-北京數(shù)學(xué)高考真題】已知雙曲線的漸近線方程為,則__________.13.【2023-全國(guó)數(shù)學(xué)甲卷(文)高考真題】若為偶函數(shù),則________.14.【2021-全國(guó)新高II卷】已知向量,,,_______.四.解答題15.【2021-天津卷】在,角所對(duì)的邊分別為,已知,.(I)求a的值;(II)求的值;(III)求的值.16.【2022-北京數(shù)學(xué)高考真題】如圖,在三棱柱中,側(cè)面為正方形,平面平面,,M,N分別為,AC的中點(diǎn).(1)求證:平面;(2)再?gòu)臈l件①、條件②這兩個(gè)條件中選擇一個(gè)作為已知,求直線AB與平面BMN所成角的正弦值.條件①:;條件②:.注:如果選擇條件①和條件②分別解答,按第一個(gè)解答計(jì)分.17.【2021-全國(guó)甲卷(理)】拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O.焦點(diǎn)在x軸上,直線l:交C于P,Q兩點(diǎn),且.已知點(diǎn),且與l相切.(1)求C,的方程;(2)設(shè)是C上的三個(gè)點(diǎn),直線,均與相切.判斷直線與的位置關(guān)系,并說(shuō)明理由.18.【2022-全國(guó)甲卷數(shù)學(xué)高考真題】設(shè)拋物線的焦點(diǎn)為F,點(diǎn),過(guò)F的直線交C于M,N兩點(diǎn).當(dāng)直線MD垂直于x軸時(shí),.(1)求C的方程;(2)設(shè)直線與C的另一個(gè)交點(diǎn)分別為A,B,記直線的傾斜角分別為.當(dāng)取得最大值時(shí),求直線AB的方程.19.【2021-浙江卷】設(shè)a,b為實(shí)數(shù),且,函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若對(duì)任意,函數(shù)有兩個(gè)不同的零點(diǎn),求a的取值范圍;(3)當(dāng)時(shí),證明:對(duì)任意,函數(shù)有兩個(gè)不同的零點(diǎn),滿足.(注:是自然對(duì)數(shù)的底數(shù))答案第1頁(yè),共SECTIONPAGES1頁(yè)2021-2023年全國(guó)高考數(shù)學(xué)典例真題匯編(新高考模式訓(xùn)練)7【參考答案】1.答案:A解析:因?yàn)椋?,即.故選:A.2.答案:B解析:由題設(shè)可得,故,故選:B.3.答案:C解析:因?yàn)?,故,故故選:C.4.答案:C解析:設(shè)等差數(shù)列的公差為,則,記為不超過(guò)的最大整數(shù).若為單調(diào)遞增數(shù)列,則,若,則當(dāng)時(shí),;若,則,由可得,取,則當(dāng)時(shí),,所以,“是遞增數(shù)列”“存在正整數(shù),當(dāng)時(shí),”;若存在正整數(shù),當(dāng)時(shí),,取且,,假設(shè),令可得,且,當(dāng)時(shí),,與題設(shè)矛盾,假設(shè)不成立,則,即數(shù)列是遞增數(shù)列.所以,“是遞增數(shù)列”“存在正整數(shù),當(dāng)時(shí),”.所以,“是遞增數(shù)列”是“存在正整數(shù),當(dāng)時(shí),”的充分必要條件.故選:C.5.答案:D解析:的展開(kāi)式的通項(xiàng)為令得所以的展開(kāi)式中的系數(shù)為故選:D【點(diǎn)睛】本題考查的是二項(xiàng)式展開(kāi)式通項(xiàng)的運(yùn)用,較簡(jiǎn)單.6.答案:B解析:詳解】過(guò)作,過(guò)作,故,由題,易知為等腰直角三角形,所以.所以.因?yàn)?,所以在中,由正弦定理得:,而,所以,所以.故選:B.【點(diǎn)睛】本題關(guān)鍵點(diǎn)在于如何正確將的長(zhǎng)度通過(guò)作輔助線的方式轉(zhuǎn)化為.7.答案:C解析:將式子進(jìn)行齊次化處理得:.故選:C.【點(diǎn)睛】易錯(cuò)點(diǎn)睛:本題如果利用,求出的值,可能還需要分象限討論其正負(fù),通過(guò)齊次化處理,可以避開(kāi)了這一討論.8.答案:C解析:解:依題意可得,因,所以,要使函數(shù)在區(qū)間恰有三個(gè)極值點(diǎn)、兩個(gè)零點(diǎn),又,的圖象如下所示:則,解得,即.故選:C.9.答案:AC解析:由標(biāo)準(zhǔn)差的定義可知,標(biāo)準(zhǔn)差考查的是數(shù)據(jù)的離散程度;由中位數(shù)的定義可知,中位數(shù)考查的是數(shù)據(jù)的集中趨勢(shì);由極差的定義可知,極差考查的是數(shù)據(jù)的離散程度;由平均數(shù)的定義可知,平均數(shù)考查的是數(shù)據(jù)的集中趨勢(shì);故選:AC.10.答案:BC解析:設(shè)正方體的棱長(zhǎng)為,對(duì)于A,如圖(1)所示,連接,則,故(或其補(bǔ)角)為異面直線所成的角,直角三角形,,,故,故不成立,故A錯(cuò)誤.對(duì)于B,如圖(2)所示,取的中點(diǎn)為,連接,,則,,由正方體可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正確.對(duì)于C,如圖(3),連接,則,由B的判斷可得,故,故C正確.對(duì)于D,如圖(4),取的中點(diǎn),的中點(diǎn),連接,則,因?yàn)?,故,故,所以或其補(bǔ)角為異面直線所成的角,因?yàn)檎襟w的棱長(zhǎng)為2,故,,,,故不是直角,故不垂直,故D錯(cuò)誤.故選:BC.11.答案:ACD解析:對(duì)于A選項(xiàng),,,所以,,A選項(xiàng)正確;對(duì)于B選項(xiàng),取,,,而,則,即,B選項(xiàng)錯(cuò)誤;對(duì)于C選項(xiàng),,所以,,,所以,,因此,,C選項(xiàng)正確;對(duì)于D選項(xiàng),,故,D選項(xiàng)正確.故選:ACD.12.答案:解析:解:對(duì)于雙曲線,所以,即雙曲線的標(biāo)準(zhǔn)方程為,則,,又雙曲線的漸近線方程為,所以,即,解得;故答案為:

13.答案:2解析:,且函數(shù)為偶函數(shù),,解得,故答案為:214.答案:解析:由已知可得,因此,.故答案為:.15.答案:(I);(II)(III)解析:(II)由余弦定理即可計(jì)算;(III)利用二倍角公式求出正弦值和余弦值,再由兩角差的正弦公式即可求出.(I)因?yàn)椋烧叶ɡ砜傻?,,;(II)由余弦定理可得;(III),,,,所以.16.答案:(1)見(jiàn)解析(2)見(jiàn)解析解析:(2)選①②均可證明平面,從而可建立如圖所示的空間直角坐標(biāo)系,利用空間向量可求線面角的正弦值.【小問(wèn)1詳解】取的中點(diǎn)為,連接,由三棱柱可得四邊形為平行四邊形,而,則,而平面,平面,故平面,而,則,同理可得平面,而平面,故平面平面,而平面,故平面,小問(wèn)2詳解】因?yàn)閭?cè)面為正方形,故,而平面,平面平面,平面平面,故平面,因?yàn)?,故平面,因?yàn)槠矫?,故,若選①,則,而,,故平面,而平面,故,所以,而,,故平面,故可建立如所示的空間直角坐標(biāo)系,則,故,設(shè)平面的法向量為,則,從而,取,則,設(shè)直線與平面所成的角為,則.若選②,因,故平面,而平面,故,而,故,而,,故,所以,故,而,,故平面,故可建立如所示的空間直角坐標(biāo)系,則,故,設(shè)平面的法向量為,則,從而,取,則,設(shè)直線與平面所成的角為,則.17.答案:(1)拋物線,方程為;(2)相切,理由見(jiàn)解析解析:(2)先考慮斜率不存在,根據(jù)對(duì)稱性,即可得出結(jié)論;若斜率存在,由三點(diǎn)在拋物線上,將直線斜率分別用縱坐標(biāo)表示,再由與圓相切,得出與的關(guān)系,最后求出點(diǎn)到直線的距離,即可得出結(jié)論.(1)依題意設(shè)拋物線,,所以拋物線的方程為,與相切,所以半徑為,所以的方程為;(2)設(shè)若斜率不存在,則方程為或,若方程為,根據(jù)對(duì)稱性不妨設(shè),則過(guò)與圓相切的另一條直線方程為,此時(shí)該直線與拋物線只有一個(gè)交點(diǎn),即不存在,不合題意;若方程為,根據(jù)對(duì)稱性不妨設(shè)則過(guò)與圓相切的直線為,又,,此時(shí)直線關(guān)于軸對(duì)稱,所以直線與圓相切;若直線斜率均存在,則,所以直線方程為,整理得,同理直線的方程為,直線的方程為,與圓相切,整理得,與圓相切,同理所以為方程的兩根,,到直線的距離為:,所以直線與圓相切;綜上若直線與圓相切,則直線與圓相切.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:(1)過(guò)拋物線上的兩點(diǎn)直線斜率只需用其縱坐標(biāo)(或橫坐標(biāo))表示,將問(wèn)題轉(zhuǎn)化為只與縱坐標(biāo)(或橫坐標(biāo))有關(guān);(2)要充分利用的對(duì)稱性,抽象出與關(guān)系,把的關(guān)系轉(zhuǎn)化為用表示.18.答案:(1);(2).解析:(2)設(shè)點(diǎn)的坐標(biāo)及直線,由韋達(dá)定理及斜率公式可得,再由差角的正切公式及基本不等式可得,設(shè)直線,結(jié)合韋達(dá)定理可解.【小問(wèn)1詳解】拋物線的準(zhǔn)線為,當(dāng)與x軸垂直時(shí),點(diǎn)M的橫坐標(biāo)為p,此時(shí),所以,所以拋物線C的方程為;【小問(wèn)2詳解】設(shè),直線,由可得,,由斜率公式可得,,直線,代入拋物線方程可得,,所以,同理可得,所以又因?yàn)橹本€MN、AB的傾斜角分別為,所以,若要使最大,則,設(shè),則,當(dāng)且僅當(dāng)即時(shí),等號(hào)成立,所以當(dāng)最大時(shí),,設(shè)直線,代入拋物線方程可得,,所以,所以直線.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是利用拋物線方程對(duì)斜率進(jìn)行化簡(jiǎn),利用韋達(dá)定理得出坐標(biāo)間的關(guān)系.19.答案:(1)時(shí),在上單調(diào)遞增;時(shí),函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2);(3)證明見(jiàn)解析.解析:(2)將原問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化,然后構(gòu)造新函數(shù),利用導(dǎo)函數(shù)研究函數(shù)的性質(zhì)并進(jìn)行放縮即可確定實(shí)數(shù)a的取值范圍;(3)結(jié)合(2)的結(jié)論將原問(wèn)題進(jìn)行等價(jià)變形,然后利用分析法即可證得題中的結(jié)論成立.(1),①若,則,所以在上單調(diào)遞增;②若,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.綜上可得,時(shí),在上單調(diào)遞增;時(shí),函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)有2個(gè)不同零點(diǎn)有2個(gè)不同解有2個(gè)不同的解,令,則,記,記,又,所以時(shí),時(shí),,則在單調(diào)遞減,單調(diào)遞增,,.即實(shí)數(shù)的取值范圍是.(3)有2個(gè)不同零點(diǎn),則,故函數(shù)的零點(diǎn)一定為正數(shù).由(2)可知有2個(gè)不同零點(diǎn),記較大者為,較小者為,,注意到函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,故,又由知,,要證,只需,且關(guān)于的函數(shù)在上單調(diào)遞增,所以只需證,只需證,只需證,,只需證

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論