版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省菏澤市名校八年級下冊數(shù)學期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列因式分解正確的是()A.2x2﹣2=2(x+1)(x﹣1) B.x2+2x﹣1=(x﹣1)2C.x2﹣1=(x﹣1)2 D.x2﹣x+2=x(x﹣1)+22.若a是(﹣4)2的平方根,b的一個平方根是2,則a+b的立方根為()A.0 B.2 C.0或2 D.0或﹣23.已知:是整數(shù),則滿足條件的最小正整數(shù)為()A.2 B.3 C.4 D.54.如果代數(shù)式能分解成形式,那么k的值為()A.9 B.﹣18 C.±9 D.±185.一張矩形紙片ABCD,已知AB=3,AD=2,小明按所給圖步驟折疊紙片,則線段DG長為()A.2 B. C.2 D.16.使式子有意義的x的取值范圍是().A.x≤1 B.x≤1且x≠﹣2C.x≠﹣2 D.x<1且x≠﹣27.如圖,等邊三角形的邊長為4,點是△ABC的中心,,的兩邊與分別相交于,繞點順時針旋轉時,下列四個結論正確的個數(shù)是()①;②;③;④周長最小值是9.A.1個 B.2個 C.3個 D.4個8.下列根式中,不是最簡二次根式的是()A.105 B.2 C.8 D.9.觀察下列圖形,其中既是軸對稱又是中心對稱圖形的是()A. B. C. D.10.已知:如果二次根式是整數(shù),那么正整數(shù)n的最小值是()A.1 B.4 C.7 D.28二、填空題(每小題3分,共24分)11.在菱形ABCD中,∠A=60°,其所對的對角線長為4,則菱形ABCD的面積是_______.12.下表是某地生活垃圾處理情況的分析,選擇________統(tǒng)計圖進行分析比較較為合理.處里方式回收利用填埋焚燒占的百分比4%23%73%13.如圖,在平面直角坐標系xOy中,四邊形OABC是平行四邊形,且A(4,0)、B(6,2)、M(4,3).在平面內有一條過點M的直線將平行四邊形OABC的面積分成相等的兩部分,請寫出該直線的函數(shù)表達式_____.14.已知:a、b、c是△ABC的三邊長,且滿足|a﹣3|++(c﹣5)2=0,則該三角形的面積是_____.15.如圖,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,則△BDE的周長等于_.16.如圖,過點N(0,-1)的直線y=kx+b與圖中的四邊形ABCD有不少于兩個交點,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),則k的取值范圍____________17.如果點A(1,n)在一次函數(shù)y=3x﹣2的圖象上,那么n=_____.18.小明統(tǒng)計了他家今年1月份打電話的次數(shù)及通話時間,并列出了頻數(shù)分布表(如表)通話時間x/min0<x≤55<x≤1010<x≤1515<x≤20頻數(shù)(通話次數(shù))201695如果小明家全年打通電話約1000次,則小明家全年通話時間不超過5min約為_____次.三、解答題(共66分)19.(10分)已知兩個共一個頂點的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點,連接MB、ME.(1)如圖1,當CB與CE在同一直線上時,求證:MB∥CF;(2)如圖1,若CB=a,CE=2a,求BM,ME的長;(3)如圖2,當∠BCE=45°時,求證:BM=ME.20.(6分)母親節(jié)前夕,某商店從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為3:4,單價和為210元.(1)求A、B兩種禮盒的單價分別是多少元?(2)該商店購進這兩種禮盒恰好用去9900元,且購進A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?(3)根據(jù)市場行情,銷售一個A鐘禮盒可獲利12元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?21.(6分)已知一次函數(shù)y=(2m+1)x+m﹣3(1)若函數(shù)圖象經(jīng)過原點,求m的值;(2)若函數(shù)圖象與y軸的交點坐標為(0,﹣2),求m的值;(3)若y隨著x的增大而增大,求m的取值范圖;(4)若函數(shù)圖象經(jīng)過第一、三,四象限,求m的取值范圍.22.(8分)在△BCF中,點D是邊CF上的一點,過點D作AD∥BC,過點B作BA∥CD交AD于點A,點G是BC的中點,點E是線段AD上一點,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,請求出AB的長;(2)求證:CD=BF+DF.23.(8分)先化簡,再求值(1)已知,求的值.(2)當時,求的值.24.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.25.(10分)一家水果店以每千克2元的價格購進某種水果若干千克,然后以每千克4元的價格出售,每天可售出100千克,通過調查發(fā)現(xiàn),這種水果每千克的售價每降低1元,每天可多售出200千克.(1)若將這種水果每千克的售價降低元,則每天銷售量是多少千克?(結果用含的代數(shù)式表示)(2)若想每天盈利300元,且保證每天至少售出260千克,那么水果店需將每千克的售價降低多少元?26.(10分)如圖,點、、、在一條直線上,,,,交于.求證:與互相平分,
參考答案一、選擇題(每小題3分,共30分)1、A【解析】
由題意根據(jù)因式分解的意義,即可得答案判斷選項.【詳解】解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故A符合題意;B、x2+2x+1=(x+1)2,故B不符合題意;C、x2﹣1=(x+1)(x﹣1),故C不符合題意;D、不能分解,故D不符合題意;故選:A.【點睛】本題考查因式分解的意義,一提,二套,三檢查,注意分解要徹底.2、C【解析】
先依據(jù)平方根的定義和性質求得a,b的值,然后依據(jù)有理數(shù)的加法法則求解,再求立方根即可解答【詳解】∵(﹣4)2=16,∴a=±4,∵b的一個平方根是2,∴b=4,當a=4時,∴a+b=8,∴8的立方根是2,當a=﹣4時,∴a+b=0,∴0的立方根是0,故選:C.【點睛】此題考查了平方根和立方根,解題關鍵在于求出a,b的值3、D【解析】試題解析:∵=,且是整數(shù),∴2是整數(shù),即1n是完全平方數(shù),∴n的最小正整數(shù)為1.故選D.點睛:主要考查了乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù).二次根式的運算法則:乘法法則.除法法則.解題關鍵是分解成一個完全平方數(shù)和一個代數(shù)式的積的形式.4、B【解析】
利用完全平方公式的結構特征判斷即可確定出k的值.【詳解】解:∵=(x-9)2,
∴k=-18,
故選:B.【點睛】此題考查了因式分解-運用公式法,熟練掌握完全平方公式是解本題的關鍵.5、B【解析】
首先根據(jù)折疊的性質求出DA′、CA′和DC′的長度,進而求出線段DG的長度.【詳解】解:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=DC′=,故選B.【點睛】本題主要考查了翻折變換以及矩形的性質,解題的關鍵是求出DC′的長度.6、B【解析】
根據(jù)被開方數(shù)大于等于0,分母不等于0列式計算即可得解.【詳解】解:由題意得,1﹣x≥0且1+x≠0,解得x≤1且x≠﹣1.故選B.考點:二次根式有意義的條件;分式有意義的條件.7、B【解析】
首先連接OB、OC,如圖,利用等邊三角形的性質得∠ABO=∠OBC=∠OCB=30°,再證明∠BOD=∠COE,于是可判斷△BOD≌△COE,利用全等三角形的對應邊相等可對①進行判斷;再利用S=S得到四邊形ODBE的面積=S,則可對③進行判斷,然后作OH⊥DE,則DH=EH,計算出S=OE,利用S△ODE隨OE的變化而變化和四邊形ODBE的面積為定值可對②進行判斷,接下來由△BDE的周長=BC+DE=4+DE=4+OE,結合垂線段最短,當OE⊥BC時,OE最小,△BDE的周長最小,計算出此時OE的長則可對④進行判斷.【詳解】連接OB,OC,如圖.∵△ABC為等邊三角形,∴∠ABC=∠ACB=60°.∵點O是△ABC的中心,∴OB=OC,OB.OC分別平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD和△COE中,∠BOD=∠COE,BO=CO,∠OBD=∠OCE,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正確;∴S=S,∴四邊形ODBE的面積=S=S=××4=,所以③正確;作OH⊥DE,如圖,則DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=··OE·OE=OE,即S隨OE的變化而變化,而四邊形ODBE的面積為定值,∴S≠S,所以②錯誤;∵BD=CE,∴△BDE的周長=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,當OE⊥BC時,OE最小,△BDE的周長最小,此時OE=,∴△BDE周長的最小值=4+2=6,所以④錯誤.故選B.【點睛】此題考查旋轉的性質、等邊三角形的性質和全等三角形的判定與性質,解題關鍵是牢記旋轉前、后的圖形全等.8、C【解析】
根據(jù)最簡二次根式的概念即可求出答案.【詳解】C.原式=22,故C不是最簡二次根式,故選:C.【點睛】此題考查最簡二次根式,解題關鍵在于掌握其概念.9、D【解析】
根據(jù)中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】A.是中心對稱圖形,不是軸對稱圖形,選項不符合題意;
B.是軸對稱圖形,不是中心對稱圖形,選項不符合題意;
C.不是中心對稱圖形,也不是軸對稱圖形,選項不符合題意;
D.是中心對稱圖形,也是軸對稱圖形,選項符合題意,
故選D.【點睛】本題考查軸對稱圖形和中心對稱圖形,解題的關鍵是掌握軸對稱圖形和中心對稱圖形的定義.10、C【解析】
先將化為最簡二次根式,然后根據(jù)是整數(shù)可得出n的最小值.【詳解】=2,又∵是整數(shù),∴n的最小值為1.故選C.【點睛】此題考查了二次根式的知識,解答本題的關鍵是將化為最簡二次根式,難度一般.二、填空題(每小題3分,共24分)11、8.【解析】
直接利用菱形的性質結合勾股定理得出菱形的另一條對角線的長,進而利用菱形面積求法得出答案.【詳解】如圖所示:∵在菱形ABCD中,∠BAD=60°,其所對的對角線長為4,∴可得AD=AB,故△ABD是等邊三角形,則AB=AD=4,故BO=DO=2,則AO=,故AC=4,則菱形ABCD的面積是:×4×4=8.故答案為:8.【點睛】此題主要考查了菱形的性質以及勾股定理,正確得出菱形的另一條對角線的長是解題關鍵.12、扇形【解析】
條形統(tǒng)計圖能很容易看出數(shù)量的多少;折線統(tǒng)計圖不僅容易看出數(shù)量的多少,而且能反映數(shù)量的增減變化情況;扇形統(tǒng)計圖能反映部分與整體的關系;由此根據(jù)情況選擇即可.【詳解】解:由統(tǒng)計圖的特點可知:想用統(tǒng)計圖記錄垃圾的處理比例,就用扇形統(tǒng)計圖.故答案為扇形.【點睛】此題應根據(jù)條形統(tǒng)計圖、折線統(tǒng)計圖、扇形統(tǒng)計圖各自的特點進行解答.13、【解析】如圖所示:連接OB、AC相交于點E(3,1),過點E、M作直線EM,則直線EM即為所求的直線設直線EM的解析式為y=kx+b,把E、M兩點坐標代入y=kx+b中,得解得所以直線的函數(shù)表達式:y=2x-5.故答案是:y=2x-5.【點睛】此題考查了平行四邊形的性質、坐標與圖形性質以及利用待定系數(shù)法求一次函數(shù)的解析式,解題的關鍵是求出其中心對稱點的坐標,過點E和點M作直線EM,再用待定系數(shù)法求直線的解析式即可.14、1【解析】
根據(jù)絕對值,二次根式,平方的非負性求出a,b,c的值,再根據(jù)勾股定理逆定理得到三角形為直角三角形,故可求解.【詳解】解:由題意知a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4,c=5,∴a2+b2=c2,∴三角形的形狀是直角三角形,則該三角形的面積是3×4÷2=1.故答案為:1.【點睛】此題主要考查勾股定理的應用,解題的關鍵是熟知實數(shù)的性質.15、1【解析】
由題中條件可得Rt△ACD≌Rt△AED,進而得出AC=AE,然后把△BDE的邊長通過等量轉化即可得出結論.【詳解】解:∵AD平分∠CAB,AC⊥BC于點C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周長為:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.故答案為:1.【點睛】本題主要考查了角平分線的性質以及全等三角形的判定及性質,能夠掌握并熟練運用.16、<k≤2.【解析】
直線y=kx+b過點N(0,-2),則b=-2,y=kx-2.當直線y=kx-2的圖象過A點時,求得k的值;當直線y=kx-2的圖象過B點時,求得k的值;當直線y=kx-2的圖象過C點時,求得k的值,最后判斷k的取值范圍.【詳解】∵直線y=kx+b過點N(0,-2),∴b=-2,∴y=kx-2.當直線y=kx-2的圖象過A點(2,3)時,2k-2=3,k=2;當直線y=kx-2的圖象過B點(2,2)時,k-2=2,k=2;當直線y=kx-2的圖象過C點(4,2)時,4k-2=2,k=,∴k的取值范圍是<k≤2.故答案為<k≤2.【點睛】本題主要考查了運用待定系數(shù)法求一次函數(shù)解析式,解題時注意:求正比例函數(shù)y=kx,只要一對x,y的值;而求一次函數(shù)y=kx+b,則需要兩組x,y的值.17、1【解析】
把點A的坐標代入一次函數(shù)y=3x﹣2解析式中,即可求出n的值.【詳解】∵點A(1,n)在一次函數(shù)y=3x﹣2的圖象上,∴n=3×1﹣2=1.故答案為:1.【點睛】本題考查了點在一次函數(shù)圖象上的條件,即點的坐標滿足一次函數(shù)解析式,正確計算是解題的關鍵.18、1.【解析】
根據(jù)表格中的數(shù)據(jù)可以計算出小明家全年通話時間不超過5min的次數(shù),本題得以解決.【詳解】由題意可得,小明家全年通話時間不超過5min約為:1000×=1(次),故答案為:1.【點睛】本題主要考查用樣本估計總體,一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.三、解答題(共66分)19、(1)證明見解析;(2)BM=ME=;(3)證明見解析.【解析】
(1)如圖1,延長AB交CF于點D,證明BM為△ADF的中位線即可.(2)如圖2,作輔助線,推出BM、ME是兩條中位線.(3)如圖3,作輔助線,推出BM、ME是兩條中位線:BM=DF,ME=AG;然后證明△ACG≌△DCF,得到DF=AG,從而證明BM=ME.【詳解】(1)如圖1,延長AB交CF于點D,則易知△ABC與△BCD均為等腰直角三角形,∴AB=BC=BD.∴點B為線段AD的中點.又∵點M為線段AF的中點,∴BM為△ADF的中位線.∴BM∥CF.(2)如圖2,延長AB交CF于點D,則易知△BCD與△ABC為等腰直角三角形,∴AB=BC=BD=a,AC=AD=a,∴點B為AD中點,又點M為AF中點.∴BM=DF.分別延長FE與CA交于點G,則易知△CEF與△CEG均為等腰直角三角形,∴CE=EF=GE=2a,CG=CF=a.∴點E為FG中點,又點M為AF中點.∴ME=AG.∵CG=CF=a,CA=CD=a,∴AG=DF=a.∴BM=ME=.(3)如圖3,延長AB交CE于點D,連接DF,則易知△ABC與△BCD均為等腰直角三角形,∴AB=BC=BD,AC=CD.∴點B為AD中點.又點M為AF中點,∴BM=DF.延長FE與CB交于點G,連接AG,則易知△CEF與△CEG均為等腰直角三角形,∴CE=EF=EG,CF=CG.∴點E為FG中點.又點M為AF中點,∴ME=AG.在△ACG與△DCF中,∵,∴△ACG≌△DCF(SAS).∴DF=AG,∴BM=ME.20、(1)A種禮盒單價為90元,B種禮盒單價為120元;(2)見解析;(3)1320元.【解析】
(1)利用A、B兩種禮盒的單價比為3:4,單價和為210元,得出等式求出即可;(2)利用兩種禮盒恰好用去9900元,結合(1)中所求,得出等式,利用兩種禮盒的數(shù)量關系求出即可;(3)首先表示出店主獲利,進而利用w,m關系得出符合題意的答案.【詳解】(1)設A種禮盒單價為3x元,B種禮盒單價為4x元,則:3x+4x=210,解得x=30,所以A種禮盒單價為3×30=90元,B種禮盒單價為4×30=120元.(2)設A種禮盒購進a個,購進B種禮盒b個,則:90a+120b=9900,可列不等式組為:,解得:30≤a≤36,因為禮盒個數(shù)為整數(shù),所以符合的方案有2種,分別是:第一種:A種禮盒30個,B種禮盒60個,第二種:A種禮盒34個,B種禮盒57個.(3)設該商店獲利w元,由(2)可知:w=12a+(18﹣m)b,a=110-,則w=(2﹣m)b+1320,若使所有方案都獲利相同,則令2﹣m=0,得m=2,此時店主獲利1320元.【點睛】此題主要考查了一元一次方程的應用以及一次函數(shù)的應用和一元一次不等式的應用,根據(jù)題意結合得出正確等量關系是解題關鍵.21、(1)m=1;(2)m=1;(1)m>﹣0.5;(4)﹣0.5<m<1.【解析】
(1)經(jīng)過原點,則m-1=0,求得其值即可;
(2)若函數(shù)圖象與y軸的交點坐標為(0,﹣2),即為m-1=-2;
(1)y隨著x的增大而增大,就是,從而求得解集;
(4)函數(shù)圖象經(jīng)過第一、三,四象限,k>0,b≤0,求得m的取值范圍即可.【詳解】解:(1)把(0,0)代入y=(2m+1)x+m﹣1得m﹣1=0,解得m=1;(2)把x=0代入y=(2m+1)x+m﹣1得y=m﹣1,則直線y=(2m+1)x+m﹣1與y軸的交點坐標為(0,m﹣1),所以m﹣1=﹣2,解得m=1;(1)∵y隨著x的增大而增大,∴2m+1>0,解得:m>﹣0.5;(4)由題意可得:解得:即當時函數(shù)圖象經(jīng)過第一、三,四象限.【點睛】考查一次函數(shù)的性質,解題的關鍵是熟練掌握一次函數(shù)的性質并正確的應用.22、(1)3+(2)見解析【解析】
(1)過點E作EH⊥AB交AB于點H.分別求出AH,BH即可解決問題;(2)連接EF,延長FE交AB與點M.想辦法證明△BMF是等腰三角形即可解決問題;【詳解】解:(1)過點E作EH⊥AB交AB于點H.∵AD∥BC,AB∥CD,∴四邊形ABCD為平行四邊形.∴AB=DC,∠DAB=∠DBC,在△CGD和△AEB中,,∴△CGD≌△AEB,∴∠DGC=∠BEA,∴∠DGB=∠BED,∵AD∥BC,∴∠EDG+∠DGB=180°,∴∠EDG+∠BED=180°∴EB∥DG,∴四邊形BGDE為平行四邊形,∴BG=ED,∵G是BD的中點,∴BG=BC,∴BC=AD,ED=BG=AD,∵BC=2,∴AE=AD=,在Rt△AEH中,∵∠EAB=45°,sin∠EAB=sin45°=,∴EH=,∵∠EHA=90°,∴△AHE為等腰直角三角形,∴AH=EH=,∵∠F=60°,∴∠FBA=60°,∵∠EBA=∠EBF,∴∠EBA=30°,在Rt△EHB中,tan∠EBH=tan30°=,∴HB=3,∴AB=3+.(2)連接EF,延長FE交AB與點M.∵∠A=∠EDF,AE=DE,∠AEM=∠DEF,∴△AEM≌△DEF(ASA),∴DF=AM,ME=EF,又∵∠EBA=∠EBF,∴△MBF是等腰三角形∴BF=BM,又∵AB=AM+BM,∴CD=BF+DF.【點睛】本題考查全等三角形的判定和性質,等腰三角形的判定和性質,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形或全等三角形解決問題,屬于中考??碱}型.23、(1);(2)【解析】
(1)先根據(jù)分式混合運算的法則把原式進行化簡,再把代入進行計算即可;(2)先把分式進行化簡計算,在化簡時要注意運算順序,然后再把x=代入化簡后的式子即可得到答案.【詳解】(1)解:原式=(2分)==
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國室內觀葉植物市場調查研究報告
- 2025年中國單塊升降黑板市場調查研究報告
- 2025年中國8速摩擦式飛輪市場調查研究報告
- 2025至2030年中國牛奶高鈣豆奶片數(shù)據(jù)監(jiān)測研究報告
- 二零二五年個人汽車貸款擔保合同示范文本發(fā)布2篇
- 2025版私家車公用停車管理合同3篇
- 二零二五年度新能源儲能項目投資合同示范4篇
- 汽車按揭貸款服務合同
- 附期限贈與倉庫合同
- 私家轎車車位出租合同
- 2025-2030年中國配電變壓器市場未來發(fā)展趨勢及前景調研分析報告
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗
- 2025年上海市嘉定區(qū)中考英語一模試卷
- 2025年中核財務有限責任公司招聘筆試參考題庫含答案解析
- 春節(jié)文化常識單選題100道及答案
- 華中師大一附中2024-2025學年度上學期高三年級第二次考試數(shù)學試題(含解析)
- 12123交管學法減分考試題及答案
- 2025年寒假實踐特色作業(yè)設計模板
- 《數(shù)據(jù)采集技術》課件-XPath 解析庫
- 財務報銷流程培訓課程
- 成人腦室外引流護理-中華護理學會團體 標準
評論
0/150
提交評論