甘肅省張掖市城關(guān)初中2024年八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第1頁
甘肅省張掖市城關(guān)初中2024年八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第2頁
甘肅省張掖市城關(guān)初中2024年八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第3頁
甘肅省張掖市城關(guān)初中2024年八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第4頁
甘肅省張掖市城關(guān)初中2024年八年級下冊數(shù)學期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省張掖市城關(guān)初中2024年八年級下冊數(shù)學期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,在四邊形ABCD中,下列條件不能判定四邊形ABCD是平行四邊形的是()A.AB//DC,AD//BC B.AB=CD,AD=BCC.AD//DC,AB=DC D.AB//DC,AB=DC2.如圖,已知A點坐標為(5,0),直線y=kx+b(b>0)與y軸交于點B,∠BCA=60°,連接AB,∠α=105°,則直線y=kx+b的表達式為()A. B. C. D.3.已知x=-1是一元二次方程x2+px+q=0的一個根,則代數(shù)式p-q的值是()A.1 B.-1 C.2 D.-24.甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500米,先到終點的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關(guān)系如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正確的編號是()A.①② B.②③ C.①②③ D.①②③④5.用一條直線m將如圖1的直角鐵皮分成面積相等的兩部分.圖2、圖3分別是甲、乙兩同學給出的作法,對于兩人的作法判斷正確的是()A.甲正確,乙不正確 B.甲不正確,乙正確C.甲、乙都正確 D.甲、乙都不正確6.已知反比例函數(shù)y(k≠0),當x時y=﹣1.則k的值為()A.﹣1 B.﹣4 C. D.17.如圖,中,是斜邊上的高,,那么等于()A. B. C. D.8.多項式2m+4與多項式m2+4m+4的公因式是()A.m+2 B.m﹣2 C.m+4 D.m﹣49.下列事件中,屬于確定事件的是()A.拋擲一枚質(zhì)地均勻的骰子,正面向上的點數(shù)是6B.拋擲一枚質(zhì)地均勻的骰子,正面向上的點數(shù)大于6C.拋擲一枚質(zhì)地均勻的骰子,正面向上的點數(shù)小于6D.拋擲一枚質(zhì)地均勻的骰子6次,“正面向上的點數(shù)是6”至少出現(xiàn)一次10.如圖分別是某班全體學生上學時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是()A.該班總?cè)藬?shù)為50 B.步行人數(shù)為30C.乘車人數(shù)是騎車人數(shù)的2.5倍 D.騎車人數(shù)占20%11.某次知識競賽共有20道題,每答對一道題得10分,答錯或不答都扣5分.娜娜得分要超過90分,設(shè)她答對了x道題,則根據(jù)題意可列不等式為()A.10x-5(20-x)≥90 B.10x-5(20-x)>90C.20×10-5x>90 D.20×10-5x≥9012.如圖,在正方形中,為的中點,連結(jié)并延長,交邊的延長線于點,對角線交于點,已知,則線段的長是()A. B. C. D.二、填空題(每題4分,共24分)13.一次函數(shù)(k,b為常數(shù),)的圖象如圖所示,根據(jù)圖象信息可得到關(guān)于x的方程的解為__________.14.如圖,△A1B1A2,△A2B2A3,△A3B3A4,...,△AnBnAn+1都是等腰直角三角形,其中點A1、A2、…、An,在x軸上,點B1、B2、…Bn在直線y=x上,已知OA1=1,則OA2019的長是_____.15.若是二次函數(shù),則m=________

.16.現(xiàn)有甲、乙兩支籃球隊,每支球隊隊員身高的平均數(shù)均為1.85米,方差分別為,,則身高較整齊的球隊是_______隊.17.直角三角形有兩邊長為3和4,則斜邊長為_____.18.如圖,是內(nèi)的一點,,點分別在的兩邊上,周長的最小值是____.三、解答題(共78分)19.(8分)供電局的電力維修工要到30千米遠的郊區(qū)進行電力搶修.技術(shù)工人騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結(jié)果他們同時到達.已知搶修車的速度是摩托車的1.5倍,求這兩種車的速度.20.(8分)如圖1,是甲、乙兩個圓柱形水槽的軸截面示意圖,乙槽中有一四柱形鐵塊立放其中(圓柱形鐵塊的下底面完全落在乙槽底面上).現(xiàn)將甲槽的水勻速注入乙槽,甲、乙兩個水槽中水的深度y(厘米)與注水時間x(分鐘)之間的關(guān)系如圖2所示,根據(jù)圖象提供的信息,解答下列問題:(1)圖2中折線ABC表示槽中水的深度與注水時間關(guān)系,線段DE表示槽中水的深度與注水時間之間的關(guān)系(以上兩空選填“甲”或“乙”),點B的縱坐標表示的實際意義是.(2)注水多長時間時,甲、乙.兩個水槽中水的深度相同?(3)若乙槽底面積為36平方厘米(壁厚不計),則乙槽中鐵塊的體積為立方厘米.21.(8分)我們定義:如果兩個三角形的兩組對應(yīng)邊相等,且它們的夾角互補,我們就把其中一個三角形叫做另一個三角形的“夾補三角形”,同時把第三邊的中線叫做“夾補中線.例如:圖1中,△ABC與△ADE的對應(yīng)邊AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE邊的中線,則△ADE就是△ABC的“夾補三角形”,AF叫做△ABC的“夾補中線”.特例感知:(1)如圖2、圖3中,△ABC與△ADE是一對“夾補三角形”,AF是△ABC的“夾補中線”;①當△ABC是一個等邊三角形時,AF與BC的數(shù)量關(guān)系是:;②如圖3當△ABC是直角三角形時,∠BAC=90°,BC=a時,則AF的長是;猜想論證:(2)在圖1中,當△ABC為任意三角形時,猜想AF與BC的關(guān)系,并給予證明.拓展應(yīng)用:(3)如圖4,在四邊形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等邊三角形,求證:△PCD是△PBA的“夾補三角形”,并求出它們的“夾補中線”的長.22.(10分)成都市某超市從生產(chǎn)基地購進200千克水果,每千克進價為2元,運輸過程中質(zhì)量損失5%,假設(shè)不計超市其他費用(1)如果超市在進價的基礎(chǔ)上提高5%作為售價,請你計算說明超市是否虧本;(2)如果該水果的利潤率不得低于14%,那么該水果的售價至少為多少元?23.(10分)閱讀材料:在實數(shù)范圍內(nèi),當且時,我們由非負數(shù)的性質(zhì)知道,所以,即:,當且僅當=時,等號成立,這就是數(shù)學上有名的“均值不等式”,若與的積為定值.則有最小值:請問:若,則當取何值時,代數(shù)式取最小值?最小值是多少?24.(10分)如圖,將矩形紙片ABCD折疊,使點C與點A重合,折痕EF分別與AB、DC交于點E和點F,點B的對應(yīng)點為B′.(1)證明:AE=CF;(2)若AD=12,DC=18,求DF的長.25.(12分)某市公交快速通道開通后,為響應(yīng)市政府“綠色出行”的號召,家住新城的小王上班由自駕車改為乘坐公交車.已知小王家距上班地點18千米,他用乘公交車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程的2倍還多9千米,他從家出發(fā)到達上班地點,乘公交車方式所用時間是自駕車方式所用時間的.小王用自駕車方式上班平均每小時行駛多少千米?26.因式分解:x2y﹣2xy2+y1.

參考答案一、選擇題(每題4分,共48分)1、C【解析】

根據(jù)平行四邊形的5種判定方法分別進行分析即可.【詳解】A.根據(jù)兩組對邊分別平行,是平行四邊形可判定四邊形ABCD是平行四邊形,故此選項不合題意;B.根據(jù)兩組對邊分別相等,是平行四邊形可判定四邊形ABCD是平行四邊形,故此選項不合題意;C.不能判定判定四邊形ABCD是平行四邊形,故此選項符合題意;D.根據(jù)一組對邊平行且相等,是平行四邊形可判定四邊形ABCD是平行四邊形,故此選項不合題意;故選C.【點睛】此題考查平行四邊形的判定,解題關(guān)鍵在于掌握判定定理2、B【解析】

根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)分別求B、C兩點的坐標,利用待定系數(shù)法求直線的表達式.【詳解】∵A點坐標為(1,0),∴OA=1,∵∠BCA=60°,∠α=101°,∴∠BAC=101°﹣60°=41°,∴△AOB是等腰直角三角形,∴AO=BO=1,∴B(0,1).∵∠CBO=90°﹣∠BCA=30°,∴BC=2CO,BO==CO=1,∴CO=,∴C(﹣,0),把B(0,1)和C(﹣,0)代入y=kx+b中得:,解得:,∴直線BC的表達式為:y=x+1.故選B.【點睛】本題考查了利用待定系數(shù)法求直線的解析式、含30度角的直角三角形、等腰直角三角形的性質(zhì)及圖形與坐標特點,熟練掌握圖形與坐標特點是本題的關(guān)鍵.3、A【解析】

由一元二次方程的解的定義,把x=-1代入已知方程,化簡整理即可求得結(jié)果.【詳解】解:∵x=-1是一元二次方程x2+px+q=0的一個根,∴(-1)2+p×(-1)+q=0,即∴p-q=1.故選A.【點睛】本題考查了一元二次方程的解的定義,此類問題的一般思路:見解代入,整理化簡.4、D【解析】

易得乙出發(fā)時,兩人相距8m,除以時間2即為甲的速度;由于出現(xiàn)兩人距離為0的情況,那么乙的速度較快.乙100s跑完總路程500可得乙的速度,進而求得100s時兩人相距的距離可得b的值,同法求得兩人距離為0時,相應(yīng)的時間,讓兩人相距的距離除以甲的速度,再加上100即為c的值.【詳解】解:甲的速度為:8÷2=4(米/秒);乙的速度為:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米);5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正確的有①②③④.故選D.【點睛】考查一次函數(shù)的應(yīng)用;得到甲乙兩人的速度是解決本題的突破點;得到相應(yīng)行程的關(guān)系式是解決本題的關(guān)鍵.5、C【解析】

根據(jù)圖形中所畫出的虛線,可以利用圖形中的長方形、梯形的面積比較得出直線兩旁的面積的大小關(guān)系.【詳解】如圖:圖形2中,直線m經(jīng)過了大長方形和小長方形的對角線的交點,所以兩旁的圖形的面積都是大長方形和小長方形面積的一半,所以這條直線把這個圖形分成了面積相等的兩部分,即甲做法正確;圖形3中,經(jīng)過大正方形和圖形外不添補的長方形的對角線的交點,直線兩旁的面積都是大正方形面積的一半-添補的長方形面積的一半,所以這條直線把這個圖形分成了面積相等的兩部分,即乙做法正確.故選C.【點睛】此題主要考查了中心對稱,根據(jù)圖形中的割補情況,抓住經(jīng)過對角線的交點的直線都能把長方形分成面積相等的兩部分這一特點,即可解決問題.6、A【解析】

把、,代入解析式可得k.【詳解】∵當x時y=﹣1,∴k=(﹣1)1,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.7、C【解析】

根據(jù)同角的余角相等證明∠DCB=∠CAD,利用兩角對應(yīng)相等證明△ADC∽△CDB,列比例式可得結(jié)論.【詳解】解:∵∠ACB=90°,

∴∠ACD+∠DCB=90°,

∵CD是高,

∴∠ADC=∠CDB=90°,

∴∠ACD+∠CAD=90°,

∴∠DCB=∠CAD,

∴△ADC∽△CDB,∴CD2=AD?BD,

∵AD=9,BD=4,∴CD=6故選:C.【點睛】本題考查了相似三角形的性質(zhì)和判定,熟練掌握相似三角形的判定方法是關(guān)鍵.8、A【解析】

根據(jù)公因式定義,對每個多項式整理然后即可選出有公因式的項.【詳解】2m+4=2(m+2),m2+4m+4=(m+2)2,∴多項式2m+4與多項式m2+4m+4的公因式是(m+2),故選:A.【點睛】本題考查了公因式的定義,找公因式的要點是:(1)公因式的系數(shù)是多項式各項系數(shù)的最大公約數(shù);(2)字母取各項都含有的相同字母;(3)相同字母的指數(shù)取次數(shù)最低的.9、B【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】A、拋擲一枚質(zhì)地均勻的骰子,正面向上的點數(shù)是6是隨機事件;B、拋擲一枚質(zhì)地均勻的骰子,正面向上的點數(shù)大于6是不可能事件;C、拋一枚質(zhì)地均勻的骰子,正面向上的點數(shù)小于6是隨機事件;D、拋擲一枚質(zhì)地均勻的骰子6次,“正面向上的點數(shù)是6”至少出現(xiàn)一次是隨機事件;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、B【解析】

根據(jù)乘車人數(shù)是25人,而乘車人數(shù)所占的比例是50%,即可求得總?cè)藬?shù),然后根據(jù)百分比的含義即可求得步行的人數(shù),以及騎車人數(shù)所占的比例.【詳解】A、總?cè)藬?shù)是:25÷50%=50(人),故A正確;B、步行的人數(shù)是:50×30%=15(人),故B錯誤;C、乘車人數(shù)是騎車人數(shù)倍數(shù)是:50%÷20%=2.5,故C正確;D、騎車人數(shù)所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.11、B【解析】

據(jù)答對題的得分:10x;答錯題的得分:-5(20-x),得出不等關(guān)系:得分要超過1分.【詳解】解:根據(jù)題意,得

10x-5(20-x)>1.

故選:B.【點睛】本題考查由實際問題抽象出一元一次不等式,要特別注意:答錯或不答都扣5分,至少即大于或等于.12、D【解析】

根據(jù)正方形的性質(zhì)可得出AB∥CD,進而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出,結(jié)合FG=2可求出AF、AG的長度,由CG∥AB、AB=2CG可得出CG為△EAB的中位線,再利用三角形中位線的性質(zhì)可求出AE的長度,此題得解.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴,∴AF=2GF=4,∴AG=6,∵CG∥AB,AB=2CG,∴CG為△EAB的中位線,∴AE=2AG=12,故選D.【點睛】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)以及三角形的中位線,利用相似三角形的性質(zhì)求出AF的長度是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、x=1【解析】

直接根據(jù)圖象找到y(tǒng)=kx+b=4的自變量的值即可.【詳解】觀察圖象知道一次函數(shù)y=kx+b(k、b為常數(shù),且k≠0)的圖象經(jīng)過點(1,4),所以關(guān)于x的方程kx+b=4的解為x=1,故答案為:x=1.【點睛】本題考查了一次函數(shù)與一元一次不等式,能結(jié)合圖象確定方程的解是解答本題的關(guān)鍵.14、1【解析】

根據(jù)一次函數(shù)的性質(zhì)可得∠B1OA1=45°,然后求出△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,然后根據(jù)等腰直角三角形斜邊上的高等于斜邊的一半求出OA3,同理求出OA4,然后根據(jù)變化規(guī)律寫出即可.【詳解】解:∵直線為y=x,∴∠B1OA1=45°,∵△A2B2A3,∴B2A2⊥x軸,∠B2A3A2=45°,∴△OA2B2是等腰直角三角形,△OA3B2是等腰直角三角形,∴OA3=2A2B2=2OA2=2×2=4,同理可求OA4=2OA3=2×4=23,…,所以,OA2019=1.故答案為:1.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,等腰直角三角形的性質(zhì),熟記性質(zhì)并確定出等腰直角三角形是解題的關(guān)鍵.15、-1.【解析】試題分析:根據(jù)二次函數(shù)的定義可知:,解得:,則m=-1.16、甲【解析】

根據(jù)方差的意義解答.方差,通俗點講,就是和中心偏離的程度,用來衡量一批數(shù)據(jù)的波動大?。催@批數(shù)據(jù)偏離平均數(shù)的大小).在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定.【詳解】∵<,∴身高較整齊的球隊是甲隊。故答案為:甲.【點睛】此題考查極差、方差與標準差,解題關(guān)鍵在于掌握其性質(zhì).17、4或1【解析】

直角三角形中斜邊為最長邊,無法確定邊長為4的邊是否為斜邊,所以要討論(1)邊長為4的邊為斜邊;(2)邊長為4的邊為直角邊.【詳解】解:(1)當邊長為4的邊為斜邊時,該直角三角形中斜邊長為4;(2)當邊長為4的邊為直角邊時,則根據(jù)勾股定理得斜邊長為=1,故該直角三角形斜邊長為4cm或1cm,故答案為:4或1.【點睛】本題考查了勾股定理在直角三角形中的運用,考查了分類討論思想,本題中運用分類討論思想討論邊長為4的邊是直角邊還是斜邊是解題的關(guān)鍵18、【解析】

根據(jù)軸對稱圖形的性質(zhì),作出P關(guān)于OA、OB的對稱點M、N,連接OM、ON、MN,根據(jù)兩點之間線段最短得到MN即為△PQR周長的最小值,然后證明△MON為等腰直角三角形,利用勾股定理求出MN即可.【詳解】解:分別作P關(guān)于OA、OB的對稱點M、N,連接OM、ON,連接MN交OA、OB交于Q、R,則△PQR符合條件且△PQR的周長等于MN,由軸對稱的性質(zhì)可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=∠MOP+∠NOP=2∠AOB=90°,∴△MON為等腰直角三角形.∴MN=,所以△PQR周長的最小值為,故答案為:.【點睛】此題考查了軸對稱最短路徑問題,等腰直角三角形的判定和性質(zhì)以及勾股定理,根據(jù)題意構(gòu)造出對稱點,轉(zhuǎn)化為直角三角形的問題是解題的關(guān)鍵.三、解答題(共78分)19、摩托車的速度是40km/h,搶修車的速度是60km/h.【解析】

設(shè)摩托車的是xkm/h,那么搶修車的速度是1.5xkm/h,根據(jù)供電局的搶修車所用時間+15分鐘=技術(shù)工人騎摩托車所用時間,可列方程求解.【詳解】解:設(shè)摩托車的是xkm/h,x=40

經(jīng)檢驗x=40是原方程的解.

40×1.5=60(km/h).

答:摩托車的速度是40km/h,搶修車的速度是60km/h.【點睛】本題考查分式方程的應(yīng)用,讀懂題意找出等量關(guān)系是解題的關(guān)鍵.20、(1)乙;甲;乙槽中鐵塊的高度為14cm;(2)當2分鐘時兩個水槽水面一樣高;(3)84.【解析】

(1)根據(jù)題目中甲槽向乙槽注水可以得到折線ABC是乙槽中水的深度與注水時間之間的關(guān)系,點B表示的實際意義是乙槽內(nèi)液面恰好與圓柱形鐵塊頂端相平;(2)分別求出兩個水槽中y與x的函數(shù)關(guān)系式,令y相等即可得到水位相等的時間;(3)用水槽的體積減去水槽中水的體積即可得到鐵塊的體積;【詳解】解:(1)根據(jù)圖像可知,折線ABC表示乙槽中水的深度與注水時間關(guān)系,線段DE表示甲槽中水的深度與注水時間之間的關(guān)系,點B的縱坐標表示的實際意義是:乙槽中鐵塊的高度為14cm;故答案為:乙;甲;乙槽中鐵塊的高度為14cm;(2)設(shè)線段AB、DE的解析式分別為:y1=k1x+b1,y2=k2x+b2,∵AB經(jīng)過點(0,2)和(4,14),DE經(jīng)過(0,12)和(6,0)∴,解得:,∴解析式為y=3x+2和y=-2x+12,令3x+2=-2x+12,解得x=2,∴當2分鐘時兩個水槽水面一樣高.(3)由圖象知:當水槽中沒有沒過鐵塊時4分鐘水面上升了12cm,即1分鐘上升3cm,當水面沒過鐵塊時,2分鐘上升了5cm,即1分鐘上升2.5cm,設(shè)鐵塊的底面積為acm2,則乙水槽中不放鐵塊的體積分別為:2.5×36cm3,∴放了鐵塊的體積為:3×(36-a)cm3,∴1×3×(36-a)=1×2.5×36,解得a=6,∴鐵塊的體積為:6×14=84(cm3),故答案為:84.【點睛】本題考查的是用一次函數(shù)解決實際問題,此類題是近年中考中的熱點問題.注意利用一次函數(shù)求最值時,關(guān)鍵是應(yīng)用一次函數(shù)的性質(zhì);即由函數(shù)y隨x的變化,結(jié)合自變量的取值范圍確定最值.21、(1)AF=BC;a;(2)猜想:AF=BC,(3)【解析】

(1)①先判斷出AD=AE=AB=AC,∠DAE=120°,進而判斷出∠ADE=30°,再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論;②先判斷出△ABC≌△ADE,利用直角三角形的性質(zhì)即可得出結(jié)論;(2)先判斷出△AEG≌△ACB,得出EG=BC,再判斷出DF=EF,即可得出結(jié)論;(3)先判斷出四邊形PHCD是矩形,進而判斷出∠DPC=30°,再判斷出PB=PC,進而求出∠APB=150°,即可利用“夾補三角形”即可得出結(jié)論.【詳解】解:(1)∵△ABC與△ADE是一對“夾補三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等邊三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夾補中線”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案為:AF=BC;②當△ABC是直角三角形時,∠BAC=90°,∵∠DAE=90°=∠BAC,易證,△ABC≌△ADE,∴DE=BC,∵AF是“夾補中線”,∴DF=EF,∴AF=DE=BC=a,故答案為a;(2)解:猜想:AF=BC,理由:如圖1,延長DA到G,使AG=AD,連EG∵△ABC與△ADE是一對“夾補三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夾補中線”,∴DF=EF,∴AF=EG,∴AF=BC;(3)證明:如圖4,∵△PAD是等邊三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四邊形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC=,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夾補三角形”,由(2)知,CD=,∴△PAB的“夾補中線”=.【點睛】此題是四邊形綜合題,主要考查了全等三角形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),銳角三角函數(shù),新定義的理解和掌握,理解新定義是解本題的關(guān)鍵.22、(1)如果超市在進價的基礎(chǔ)上提高5%作為售價,則虧本1元;(2)該水果的售價至少為2.1元/千克.【解析】

(1)根據(jù)利潤=銷售收入-成本,即可求出結(jié)論;

(2)根據(jù)利潤=銷售收入-成本結(jié)合該水果的利潤率不得低于11%,即可得出關(guān)于x的一元一次不等式,解之取其中的最小值即可得出結(jié)論.【詳解】(1)2×(1+5%)×200×(1﹣5%)﹣100=﹣1(元).答:如果超市在進價的基礎(chǔ)上提高5%作為售價,則虧本1元.(2)設(shè)該水果的售價為x元/千克,根據(jù)題意得:200×(1﹣5%)x﹣200×2≥200×2×11%,解得:x≥2.1.答:該水果的售價至少為2.1元/千克.【點睛】本題考查了一元一次不等式的應(yīng)用,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論