




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第8章整式乘法與因式分解8.4因式分解第2課時公式法
學習導航學習目標新課導入自主學習合作探究當堂檢測課堂總結一、學習目標2.能夠熟練地運用公式法分解因式.(重點)1.進一步熟悉平方差公式和完全平方公式,知道公式法的概念;二、新課導入復習引入
1.什么叫多項式的因式分解?把一個多項式化成幾個整式的積的形式,叫做多項式的因式分解.2.下列式子從左到右哪個是因式分解?哪個整式乘法?它們有什么關系?(1)a(x+y)=ax+ay
(2)ax+ay=a(x+y)整式乘法因式分解它們是互為方向相反的變形三、自主學習知識點公式法自主探究1想一想:多項式a2-b2有什么特點?你能將它分解因式嗎?它是a,b兩數(shù)
的形式平方差平方差公式:
=a2-b2(a+b)(a-b)左右兩式調換位置后得:a2-b2=
.
(a+b)(a-b)所以由a2-b2到(a+b)(a-b)的變形是
.因式分解三、自主學習自主探究2思考:多項式a2+2ab+b2與a2-2ab+b2有什么特點?這兩個多項式是兩個數(shù)的平方和加上或減去這兩個數(shù)的
,它們恰好是兩個數(shù)
的平方.我們把a2+2ab+b2和a2-2ab+b2這樣的式子叫做完全平方式.和或差積的2倍三、自主學習思考:如何將完全平方式分解因式?我們知道完全平方公式;把整式乘法的完全平方公式等號兩邊互換位置就得到:(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.a2-2ab+b2=(a-b)2.a2+2ab+b2=(a+b)2;
三、自主學習公式法:
利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多項式分解因式,這種分解因式的方法叫做公式法.
a2-b2=(a+b)(a-b);a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.四、合作探究探究1利用平方差公式分解因式問題提出:如何利用平方差公式把x4-y4分解因式.問題探究:
x4=()2
,y4=()2;
相一想:(x2-y2)還能進行因式分解嗎?如果可以x2-y2=
.那么最后得出x4-y4=
.(x+y)(x-y)問題解決:利用平方差公式:x4-y4=()2+()2=
=
.我們取x4=(x2)2
,y4=(y2)2;
利用平方差公式:故x4-y4=(x2)2-(y2)2=
;
±x2±y2(x2+y2)(x2-y2)(x2+y2)(x+y)(x-y)(x2+y2)(x2-y2)(x2+y2)(x+y)(x-y)x2y2四、合作探究練一練1.分解因式(1)4x2-y2(2)a4-16=(2x+y)(2x-y)解:
(1)原式=(2x)2-y2(2)原式=(a2+4)(a2-4)=(a2+4)(a+4)(a-4)注意:分解因式,必須進行到每一個多項式因式都不能再分解為止.四、合作探究探究2利用完全平方公式分解因式問題提出:如何把(1)16x2+24x+9(2)-x2+4xy-4y2分解因式?問題探究:
(1)16x2=()2
,9=()2,24x=2×()×();
(2)式子添括號原式=-();4y2=()2,4xy=2x·();問題解決:(1)16x2+24x+9=(4x)2+2·4x·3+(3)2=
;(2)-x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=
.根據(jù)完全平方公式a2+2ab+b2=(a+b)2即可將(1)式分解因式;
4x根據(jù)完全平方公式a2-2ab+b2=(a-b)2即可將(2)式分解因式.34x3x2-4xy+4y22y2y(4x+3)2-(x-2y)2四、合作探究總結:利用完全平方公式分解因式.先要將完全平方式的中兩個平方項找出,寫成兩個數(shù)或式平方的形式;然后剩下的項寫成這兩個數(shù)積的兩倍的形式;最后將整個式子寫成完全平方形式(a±b)2便完成了因式分解.四、合作探究練一練1.分解因式(1)4a2-2a+0.25(2)(a+b)2-12(a+b)+36=(2a-0.5)2,解:
(1)原式=(2a)2-2·2a·0.5+0.52(2)原式=(a+b)2-2(a+b)·6+62=(a+b-6)2分析:(1)式中4a2=(2a)2,0.25=0.52,(2)式中將(a+b)看作一個整體.五、當堂檢測1.把下列各式寫成完全平方的形式;(1)0.81x2=()2;(3)y2-8y+16=()2;(4)x2-x+=()2;(2)m2n4=()2;0.9xy-4x-mn2
五、當堂檢測2.把下列各式分解因式:(1)x2+2x+1;(2)y2-4;(3)1-6y+9y2;(4)1-36n2;(5)9n2+64m2-48mn;(6)-16+a2b2.解:(1)原式=(x+1)2;(2)原式=(y+2)(y-2);(3)原式=(3y-1)2;(4)原式=1-(6n)2=(1+6n)(1-6n);(5)原式=(3n)2-2×3n·8m+(8m)2=(3n-8m)2;(6)原式=(ab)2-42=(ab+4)(ab-4).六、課堂總結平方差公式分解因式步驟a2-b2=(a+b)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2201-2025膠體金免疫層析分析儀校準規(guī)范
- JJF 2197-2025頻標比對器校準規(guī)范
- 健身俱樂部合同范本
- 分成合同范本上樣
- 蝦皮合作合同范本
- 代家出租民房合同范本
- 企業(yè)股票承銷合同范本
- 加盟福田汽車合同范本
- 全新拖拉機買賣合同范本
- 獸藥欠賬銷售合同范本
- 2025年湘教版二年級美術下冊計劃與教案
- GB/T 4706.30-2024家用和類似用途電器的安全第30部分:廚房機械的特殊要求
- 2024年岳陽職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
- 消防安全管理制度完整版完整版
- 《朝天子詠喇叭》教學設計
- 《金融學基礎》實訓手冊
- 稅收基礎知識考試題庫
- 1t燃氣蒸汽鍋爐用戶需求(URS)(共13頁)
- 廣發(fā)證券分支機構人員招聘登記表
- 機電一體化系統(tǒng)設計課件姜培剛[1]
- 《質量管理小組活動準則》2020版_20211228_111842
評論
0/150
提交評論