2024屆遼寧省大連市沙河口區(qū)重點名校中考適應性考試數(shù)學試題含解析_第1頁
2024屆遼寧省大連市沙河口區(qū)重點名校中考適應性考試數(shù)學試題含解析_第2頁
2024屆遼寧省大連市沙河口區(qū)重點名校中考適應性考試數(shù)學試題含解析_第3頁
2024屆遼寧省大連市沙河口區(qū)重點名校中考適應性考試數(shù)學試題含解析_第4頁
2024屆遼寧省大連市沙河口區(qū)重點名校中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆遼寧省大連市沙河口區(qū)重點名校中考適應性考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,以正方形ABCD的邊CD為邊向正方形ABCD外作等邊△CDE,AC與BE交于點F,則∠AFE的度數(shù)是()A.135° B.120° C.60° D.45°2.現(xiàn)有三張背面完全相同的卡片,正面分別標有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.3.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O44.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限5.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側面剪開并展開,所得側面展開圖是()A. B.C. D.6.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.7.如圖,在?ABCD中,∠DAB的平分線交CD于點E,交BC的延長線于點G,∠ABC的平分線交CD于點F,交AD的延長線于點H,AG與BH交于點O,連接BE,下列結論錯誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE8.下列圖形是中心對稱圖形的是()A. B. C. D.9.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定10.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.1二、填空題(共7小題,每小題3分,滿分21分)11.若反比例函數(shù)的圖象與一次函數(shù)y=ax+b的圖象交于點A(﹣2,m)、B(5,n),則3a+b的值等于_____.12.如圖的三角形紙片中,,沿過點的直線折疊這個三角形,使點落在邊上的點處,折痕為,則的周長為__________.13.若點M(k﹣1,k+1)關于y軸的對稱點在第四象限內,則一次函數(shù)y=(k﹣1)x+k的圖象不經過第象限.14.如圖(1),將一個正六邊形各邊延長,構成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.15.因式分解______.16.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側面積為______cm217.邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_________.三、解答題(共7小題,滿分69分)18.(10分)已知拋物線,與軸交于兩點,與軸交于點,且拋物線的對稱軸為直線.(1)拋物線的表達式;(2)若拋物線與拋物線關于直線對稱,拋物線與軸交于點兩點(點在點左側),要使,求所有滿足條件的拋物線的表達式.19.(5分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.20.(8分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.21.(10分)為響應“植樹造林、造福后人”的號召,某班組織部分同學義務植樹棵,由于同學們的積極參與,實際參加的人數(shù)比原計劃增加了,結果每人比原計劃少栽了棵,問實際有多少人參加了這次植樹活動?22.(10分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.23.(12分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.24.(14分)(8分)如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數(shù)的解析式;(1)求△OCD的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

易得△ABF與△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度數(shù)即可.【詳解】∵四邊形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故選B.【點睛】此題考查正方形的性質,熟練掌握正方形及等邊三角形的性質,會運用其性質進行一些簡單的轉化.2、D【解析】

先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.3、A【解析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.4、A【解析】

由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關系,即可得出一次函數(shù)y=mx+n的圖象經過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經過第一、二、三象限.故選A.【點睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.5、D【解析】

此題運用圓錐的性質,同時此題為數(shù)學知識的應用,由題意蝸牛從P點出發(fā),繞圓錐側面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側面爬行的最短路線應該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發(fā),繞圓錐側面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側面展開圖還原成圓錐后,位于母線OM上的點P應該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學生的空間想象能力.6、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.7、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.8、B【解析】

根據(jù)中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!9、A【解析】

根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩(wěn)定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.10、D【解析】

過A作AH∥CD交BC于H,根據(jù)題意得到∠BAE=90°,根據(jù)勾股定理計算即可.【詳解】∵S2=48,∴BC=4,過A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.【點睛】本題考查了勾股定理,正方形的性質,平行四邊形的判定和性質,正確的作出輔助線是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、0【解析】分析:本題直接把點的坐標代入解析式求得之間的關系式,通過等量代換可得到的值.詳解:分別把A(?2,m)、B(5,n),代入反比例函數(shù)的圖象與一次函數(shù)y=ax+b得?2m=5n,?2a+b=m,5a+b=n,綜合可知5(5a+b)=?2(?2a+b),25a+5b=4a?2b,21a+7b=0,即3a+b=0.故答案為:0.點睛:屬于一次函數(shù)和反比例函數(shù)的綜合題,考查反比例函數(shù)與一次函數(shù)的交點問題,比較基礎.12、【解析】

由折疊的性質,可知:BE=BC,DE=DC,通過等量代換,即可得到答案.【詳解】∵沿過點的直線折疊這個三角形,使點落在邊上的點處,折痕為,∴BE=BC,DE=DC,∴的周長=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:【點睛】本題主要考查折疊的性質,根據(jù)三角形的周長定義,進行等量代換是解題的關鍵.13、一【解析】試題分析:首先確定點M所處的象限,然后確定k的符號,從而確定一次函數(shù)所經過的象限,得到答案.∵點M(k﹣1,k+1)關于y軸的對稱點在第四象限內,∴點M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k經過第二、三、四象限,不經過第一象限考點:一次函數(shù)的性質14、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.15、a(3a+1)【解析】3a2+a=a(3a+1),故答案為a(3a+1).16、60π【解析】

圓錐的側面積=π×底面半徑×母線長,把相應數(shù)值代入即可求解.解:圓錐的側面積=π×6×10=60πcm1.17、1a1.【解析】

結合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積-直角三角形的面積.【詳解】陰影部分的面積=大正方形的面積+小正方形的面積-直角三角形的面積=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1.故答案為:1a1.【點睛】此題考查了整式的混合運算,關鍵是列出求陰影部分面積的式子.三、解答題(共7小題,滿分69分)18、(1);(2).【解析】

(1)根據(jù)待定系數(shù)法即可求解;(2)根據(jù)題意知,根據(jù)三角形面積公式列方程即可求解.【詳解】(1)根據(jù)題意得:,解得:,拋物線的表達式為:;(2)∵拋物線與拋物線關于直線對稱,拋物線的對稱軸為直線∴拋物線的對稱軸為直線,∵拋物線與軸交于點兩點且點在點左側,∴的橫坐標為:∴,令,則,解得:,令,則,∴點的坐標分別為,,點的坐標為,∴,∵,∴,即,解得:或,∵拋物線與拋物線關于直線對稱,拋物線的對稱軸為直線,∴拋物線的表達式為或.【點睛】本題屬于二次函數(shù)綜合題,涉及了待定系數(shù)法求函數(shù)解析式、一元二次方程的解及三角形的面積,第(2)問的關鍵是得到拋物線的對稱軸為直線.19、(1)見解析;(2)2.【解析】

(1)根據(jù)相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據(jù)銳角三角函數(shù)和三角形的相似可以求得AF的長【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據(jù)勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△BEC,∴==即==解得:AF=BF=2【點睛】本題考查相似三角形的判定與性質、平行四邊形的性質、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答20、(1)詳見解析;(2);(3).【解析】

(1)只要證明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先證明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;(3)想辦法證明AB垂直平分CF即可解決問題.【詳解】(1)證明:如圖1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切線,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如圖2中,∵△ACB∽△BED;四邊形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴=;(3)解:如圖3中,∵tan∠ABC==,AC=2,∴BC=4,BE=4,DE=8,AB=2,BD=4,易證△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,設CF交AB于H,則CF=2CH=2×.【點睛】本題考查相似三角形的判定和性質、圓周角定理、切線的性質、解直角三角形、線段的垂直平分線的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考??碱}型.21、人【解析】

解:設原計劃有x人參加了這次植樹活動依題意得:解得x=30人經檢驗x=30是原方程式的根實際參加了這次植樹活動1.5x=45人答實際有45人參加了這次植樹活動.22、(1)y=﹣x2+2x+3;(2)見解析.【解析】

(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點B(3,0),點C(0,3),∴拋物線的對稱軸為直線x=1,∴點A的坐標為(﹣1,0),設點Q的坐標為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當AC為斜邊時,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點Q的坐標為(1,1)或(1,2),當AQ為斜邊時,4+t2=10+t2﹣6t+10,解得,t=,∴點Q的坐標為(1,),當CQ時斜邊時,t2﹣6t+10=4+t2+10,解得,t=,∴點Q的坐標為(1,﹣),由上可得,當點Q的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論