版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省營山縣市級名校2024屆中考數(shù)學五模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應,用圓規(guī)在數(shù)軸上畫點C,則與點C對應的實數(shù)是()A.2 B.3 C.4 D.52.四個有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣33.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.4.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.215.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.166.下列運算正確的是()A. B.C. D.7.如圖,直線AB∥CD,則下列結論正確的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°8.下列運算正確的是()A.a(chǎn)12÷a4=a3 B.a(chǎn)4?a2=a8 C.(﹣a2)3=a6 D.a(chǎn)?(a3)2=a79.已知關于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數(shù)根B.方程有兩個不相等的實數(shù)根C.沒有實數(shù)根D.無法確定10.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.48二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的非負整數(shù)解的個數(shù)是_____.12.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點,點A在點B左側,頂點在折線M﹣P﹣N上移動,它們的坐標分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則a﹣b+c的最小值是_____.13.如圖,一根5m長的繩子,一端拴在圍墻墻角的柱子上,另一端拴著一只小羊A(羊只能在草地上活動),那么小羊A在草地上的最大活動區(qū)域面積是_____平方米.14.某市對九年級學生進行“綜合素質(zhì)”評價,評價結果分為A,B,C,D,E五個等級.現(xiàn)隨機抽取了500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統(tǒng)計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據(jù)此估算該市80000名九年級學生中“綜合素質(zhì)”評價結果為“A”的學生約為_____人.15.如圖,已知一塊圓心角為270°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),圓錐底面圓的直徑是60cm,則這塊扇形鐵皮的半徑是_____cm.16.已知關于x的方程x2﹣2x+n=1沒有實數(shù)根,那么|2﹣n|﹣|1﹣n|的化簡結果是_____.三、解答題(共8題,共72分)17.(8分)如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.18.(8分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.19.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.20.(8分)為了解今年初三學生的數(shù)學學習情況,某校對上學期的數(shù)學成績作了統(tǒng)計分析,繪制得到如下圖表.請結合圖表所給出的信息解答下列問題:成績頻數(shù)頻率優(yōu)秀45b良好a0.3合格1050.35不合格60c(1)該校初三學生共有多少人?求表中a,b,c的值,并補全條形統(tǒng)計圖.初三(一)班數(shù)學老師準備從成績優(yōu)秀的甲、乙、丙、丁四名同學中任意抽取兩名同學做學習經(jīng)驗介紹,求恰好選中甲、乙兩位同學的概率.21.(8分)某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.22.(10分)如圖,將平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處.(1)連接CF,求證:四邊形AECF是菱形;(2)若E為BC中點,BC=26,tan∠B=,求EF的長.23.(12分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;24.先化簡,后求值:,其中.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應,即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應的實數(shù).【詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應的實數(shù)是:1+2=3.故選B.【點睛】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應的關系是解決本題的關鍵.2、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.3、C【解析】
先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.4、A【解析】
根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.5、D【解析】試題分析:設AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應用;2.切線的性質(zhì).6、D【解析】【分析】根據(jù)同底數(shù)冪的乘法、積的乘方、完全平方公式、多項式乘法的法則逐項進行計算即可得.【詳解】A.,故A選項錯誤,不符合題意;B.,故B選項錯誤,不符合題意;C.,故C選項錯誤,不符合題意;D.,正確,符合題意,故選D.【點睛】本題考查了整式的運算,熟練掌握同底數(shù)冪的乘法、積的乘方、完全平方公式、多項式乘法的運算法則是解題的關鍵.7、D【解析】分析:依據(jù)AB∥CD,可得∠3+∠5=180°,再根據(jù)∠5=∠4,即可得出∠3+∠4=180°.詳解:如圖,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故選D.點睛:本題考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補.8、D【解析】
分別根據(jù)同底數(shù)冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;
B、a4?a2=a6,此選項錯誤;
C、(-a2)3=-a6,此選項錯誤;
D、a?(a3)2=a?a6=a7,此選項正確;
故選D.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數(shù)冪的除法、乘法和冪的乘方的運算法則.9、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數(shù)根.故答案選B.考點:一元二次方程根的判別式.10、D【解析】解:如圖取CD的中點F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,F(xiàn)C=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,F(xiàn)C⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點睛:本題考查直角梯形的性質(zhì)、全等三角形的判定和性質(zhì)、角平分線的性質(zhì)定理、勾股定理、二元二次方程組等知識,解題的關鍵是學會添加常用輔助線,學會利用參數(shù),構建方程解決問題,屬于中考壓軸題.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數(shù)解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.12、﹣1.【解析】
由題意得:當頂點在M處,點A橫坐標為-3,可以求出拋物線的a值;當頂點在N處時,y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當頂點在M處,點A橫坐標為-3,則拋物線的表達式為:y=a(x+1)2+4,將點A坐標(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當x=-1時,y=a-b+c,頂點在N處時,y=a-b+c取得最小值,頂點在N處,拋物線的表達式為:y=-(x-3)2+1,當x=-1時,y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點睛】本題考查的是二次函數(shù)知識的綜合運用,本題的核心是確定頂點在M、N處函數(shù)表達式,其中函數(shù)的a值始終不變.13、【解析】試題分析:根據(jù)題意可知小羊的最大活動區(qū)域為:半徑為5,圓心角度數(shù)為90°的扇形和半徑為1,圓心角為60°的扇形,則.點睛:本題主要考查的就是扇形的面積計算公式,屬于簡單題型.本題要特別注意的就是在拐角的位置時所構成的扇形的圓心角度數(shù)和半徑,能夠畫出圖形是解決這個問題的關鍵.在求扇形的面積時,我們一定要將圓心角代入進行計算,如果題目中出現(xiàn)的是圓周角,則我們需要求出圓心角的度數(shù),然后再進行計算.14、16000【解析】
用畢業(yè)生總人數(shù)乘以“綜合素質(zhì)”等級為A的學生所占的比即可求得結果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質(zhì)”評價結果為“A”的學生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統(tǒng)計圖的應用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).15、40cm【解析】
首先根據(jù)圓錐的底面直徑求得圓錐的底面周長,然后根據(jù)底面周長等于展開扇形的弧長求得鐵皮的半徑即可.【詳解】∵圓錐的底面直徑為60cm,∴圓錐的底面周長為60πcm,∴扇形的弧長為60πcm,設扇形的半徑為r,則=60π,解得:r=40cm,故答案為:40cm.【點睛】本題考查了圓錐的計算,解題的關鍵是首先求得圓錐的底面周長,利用圓錐的底面周長等于扇形的弧長求解.16、﹣1【解析】
根據(jù)根與系數(shù)的關系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去絕對值符號,即可得出答案.【詳解】解:∵關于x的方程x2?2x+n=1沒有實數(shù)根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2?n|-│1-n│=n-2-n+1=-1.故答案為-1.【點睛】本題考查了根的判別式,解題的關鍵是根據(jù)根與系數(shù)的關系求出n的取值范圍再去絕對值求解即可.三、解答題(共8題,共72分)17、(1)見解析(2)圖中陰影部分的面積為π.【解析】
(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.18、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解析】
(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時M點坐標為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點的坐標為(2,0)或(6,0).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、平行四邊形的性質(zhì)和菱形的判定與性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質(zhì);熟練掌握相似三角形的判定方法;會運用分類討論的思想解決數(shù)學問題.19、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質(zhì);2.全等三角形的判定;3.平移的性質(zhì).20、(1)300人(2)b=0.15,c=0.2;(3)【解析】分析:(1)利用合格的人數(shù)除以該組頻率進而得出該校初四學生總數(shù);
(2)利用(1)中所求,結合頻數(shù)÷總數(shù)=頻率,進而求出答案;
(3)根據(jù)題意畫出樹狀圖,然后求得全部情況的總數(shù)與符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:(1)由題意可得:該校初三學生共有:105÷0.35=300(人),答:該校初三學生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如圖所示:(3)畫樹形圖得:∵一共有12種情況,抽取到甲和乙的有2種,∴P(抽到甲和乙)==.點睛:此題主要考查了樹狀圖法求概率以及條形統(tǒng)計圖的應用,根據(jù)題意利用樹狀圖得出所有情況是解題關鍵.21、(1)籃球每個50元,排球每個30元.(2)滿足題意的方案有三種:①購買籃球8個,排球12個;②購買籃球9,排球11個;③購買籃球2個,排球2個;方案①最省錢【解析】試題分析:(1)設籃球每個x元,排球每個y元,根據(jù)費用可得等量關系為:購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同,列方程求解即可;(2)不等關系為:購買足球和籃球的總費用不超過1元,列式求得解集后得到相應整數(shù)解,從而求解.試題解析:解:(1)設籃球每個x元,排球每個y元,依題意,得:解得.答:籃球每個50元,排球每個30元.(2)設購買籃球m個,則購買排球(20-m)個,依題意,得:50m+30(20-m)≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵籃球的個數(shù)必須為整數(shù),∴只能取8、9、2.∴滿足題意的方案有三種:①購買籃球8個,排球12個,費用為760元;②購買籃球9,排球11個,費用為780元;③購買籃球2個,排球2個,費用為1元.以上三個方案中,方案①最省錢.點睛:本題主要考查了二元一次方程組及一元一次不等式的應用;得到相應總費用的關系式是解答本題的關鍵.22、(1)證明見解析;(2)EF=1.【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度煤炭交易市場與鐵路運輸服務合同范本4篇
- 2025年度臨時倉儲租賃與貨物裝卸安全防護服務合同4篇
- 二零二五年度環(huán)保U盤生產(chǎn)與分銷合作協(xié)議2篇
- 2025-2030年中國高空作業(yè)機械市場發(fā)展狀況及營銷戰(zhàn)略研究報告
- 2025年度苗木種植與生態(tài)保護合作合同范本3篇
- 2025-2030年中國防水建材市場運行現(xiàn)狀及發(fā)展前景預測報告
- 2025-2030年中國鑄造機床行業(yè)前景趨勢展望及投資潛力分析報告新版
- 2025-2030年中國銅鋁復合母線市場發(fā)展現(xiàn)狀及投資策略預測研究報告
- 2025-2030年中國金屬制罐行業(yè)發(fā)展現(xiàn)狀及前景趨勢分析報告
- 2025-2030年中國西服市場未來發(fā)展趨勢及投資戰(zhàn)略研究報告新版
- 2024-2025學年成都高新區(qū)七上數(shù)學期末考試試卷【含答案】
- 定額〔2025〕1號文-關于發(fā)布2018版電力建設工程概預算定額2024年度價格水平調(diào)整的通知
- 2025年浙江杭州市西湖區(qū)專職社區(qū)招聘85人歷年高頻重點提升(共500題)附帶答案詳解
- 《數(shù)學廣角-優(yōu)化》說課稿-2024-2025學年四年級上冊數(shù)學人教版
- “懂你”(原題+解題+范文+話題+技巧+閱讀類素材)-2025年中考語文一輪復習之寫作
- 2025年景觀照明項目可行性分析報告
- 2025年江蘇南京地鐵集團招聘筆試參考題庫含答案解析
- 2025年度愛讀書學長參與的讀書項目投資合同
- 電力系統(tǒng)分析答案(吳俊勇)(已修訂)
- 化學-河北省金太陽質(zhì)檢聯(lián)盟2024-2025學年高三上學期12月第三次聯(lián)考試題和答案
- 期末復習試題(試題)-2024-2025學年四年級上冊數(shù)學 北師大版
評論
0/150
提交評論