版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
DeepLearningReproducibilityandExplainableAI(XAI)
ResultsofBSI'sprojectresearch
Documenthistory
Version
Date
Editor
Description
1.0
02.03.2022
Dr.Leventi-Peetz
TransferredfromLaTeX
FederalOfficeforInformationSecurityPostBox200363
D-53133Bonn
Phone:+49228999582-0
E-Mail:
anastasia-maria.leventi-peetz@bsi.bund.de
Internet:
https://www.bsi.bund.de
?FederalOfficeforInformationSecurity2022
Abstract
FederalOfficeforInformationSecurity
3
Abstract
ThenondeterminismofDeepLearning(DL)trainingalgorithmsanditsinfluenceontheexplainabilityofneuralnetwork(NN)modelsareinvestigatedinthisworkwiththehelpofimageclassificationexamples.Todiscusstheissue,twoconvolutionalneuralnetworks(CNN)havebeentrainedandtheirresultscompared.Thecomparisonservestheexplorationofthefeasibilityofcreatingdeterministic,robustDLmodelsanddeterministicexplainableartificialintelligence(XAI)inpractice.Successesandlimitationofallherecarriedouteffortsaredescribedindetail.Thesourcecodeoftheattaineddeterministicmodelshasbeenlistedinthiswork.Reproducibilityisindexedasadevelopment-phase-componentoftheModelGovernanceFramework,proposedbytheEUwithintheirexcellenceinAIapproach.Furthermore,reproducibilityisarequirementforestablishingcausalityfortheinterpretationofmodelresultsandbuildingoftrusttowardstheoverwhelmingexpansionofAIsystemsapplications.Problemsthathavetobesolvedonthewaytoreproducibilityandwaystodealwithsomeofthem,areexaminedinthiswork.
TableofContents
FederalOfficeforInformationSecurity
5
TableofContents
Documenthistory 2
Abstract 3
Introduction 6
ReproducibleMLmodels
6
Factorshinderingtrainingreproducibility
6
Organizationandaimofthiswork
7
Grad-CAMNN-Explanations 9
NetworkarchitecturesandHW
9
InceptionV3
10
Soundnessandstabilityofexplanations
11
Xception
13
InceptionV3vs.Xception
15
Self-trainedModels 18
DeterministicConvNet
18
DeterministicminiXception
21
Conclusionsandfuturework 24
References 26
Introduction
6
BundesamtfürSicherheitinderInformationstechnik
Introduction
ReproducibleMLmodels
ThereproducibilityofMLmodelsisasubjectofdebatewithmanyaspectsunderinvestigationbyresearchersandpractitionersinthefieldofAIalgorithmsandtheirapplications.Reproducibilityreferstotheabilitytoduplicatepriorresultsusingthesamemeansasusedintheoriginalwork,forexamplethesameprogramcodeandrawdata.However,MLexperienceswhatiscalledareproducibilitycrisisanditisdifficulttoreproduceimportantMLresults,somealsodescribedaskeyresults[
22
,
21
,
13
,
29
].Experiencereportsrefertomanypublicationsasbeingnotreplicable,orbeingstatisticallyinsignificant,orsufferingfromnarrativefallacy[
5
].EspeciallyDeepReinforcementLearninghasreceivedalotofattentionwithmanypapers[
5
,
27
,
25
,
14
]andblogposts[
24
]investigatingthehighvarianceofsomeresults.BecauseitisdifficulttodecidewhichMLresultsaretrustworthyandgeneralizetoreal-worldproblems,theimportanceofreproducibilityisgrowing.Acommonproblemconcerningreproducibilityiswhenthecodeisnotopen-sourced.Thereviewof400publicationsoftwotopAIconferencesinthelastyears,showedthatonly6%ofthemsharedtheusedcode,onethirdsharedthedataonwhichalgorithmsweretestedandhalfsharedpseudocode[
16
,
23
].Initiativeslikethe2019ICLRreproducibilitychallenge[
34
]andtheReproducibilityChallengeofNeurIPS2019[
38
,
35
],thatinvitemembersoftheAIcommunitytoreproducepapersacceptedattheconferenceandreportontheirfindingsviatheOpenReviewplatform(
/group?
id=NeurIPS.cc/2019/Reproducibility_Challenge
),demonstrateanincreasingintentiontomakemachinelearningtrustworthybymakingitcomputationallyreproducible[
19
].Reproducibilityisimportantformanyreasons:Forinstance,toquantifyprogressinML,ithastobecertainthatnotedmodelimprovementsoriginatefromtrueinnovationandarenotthesheerproductofuncontrolledrandomness[
5
].Alsofromthedevelopmentpointofview,adaptationsofmodelstochangingrequirementsandplatformsarehardlypossibleintheabsenceofbaselineorreferencecode,whichworksaccordingtoagreeduponexpectations.Thelattercouldgettransparentlyextendedorchangedbeforetestedtomeetnewdemands.ForMLmodels,itisthesonamedinferentialreproducibilitywhichisimportantasarequirementandstatesthatwhentheinferenceprocedureisrepeated,theresultsshouldbequalitativelysimilartothoseoftheoriginalprocedure[
13
].However,trainingreproducibilityisalsoanecessarysteptowardstheformationofasystematicframeworkforanend-to-endcomparisonofthequalityofMLmodels.ToourknowledgesuchaframeworkdoesnotyetexistanditshouldbeessentialifcriteriaandguaranteesregardingthequalityofMLmodelshavetobeprovided.Securityandsafetyconsiderationsareinevitablyinvolved:Forinstance,whenamodelexecutesapureclassificationexercise,decidingforexampleifatestimageshowsacatoradog,itisnotnecessarilycriticalwhenthemodel’sdecisionturnsouttobewrong.Ifhoweverthemodelisincorporatedintoaclinicaldecision-makingsystem,thathelpsmakepredictionsaboutpathologicconditionsonthebasisofpatients’data,orispartofanautomateddrivingsystem(ADS)whichactivelydecidesifavehiclehastoimmediatelystoporkeepspeeding,thenthedecisionhastobeverifiablycorrectandunderstandableateverystageofitsformation.TheincreasingdependencyonMLfordecisionmakingleadstoanincreasingconcernthattheintegrationofmodelswhichhavenotbeenfullyunderstoodcanleadtounintendedconsequences[
20
].
Factorshinderingtrainingreproducibility
Itiswellknownthatwhenamodelistrainedagainwiththesamedataitcanproducedifferentpredictions[
8
,
7
].Tothereasonsthatmakereproducibilitydifficulttherebelong:differentproblemformulations,missingcompatibilitybetweenDNN-architectures,missingappropriatebenchmarks,differentOS,differentnumericallibraries,systemarchitecturesorsoftwareenvironmentslikethePythonversionetc.Reproducibilityasabasisforthegenerationofsoundexplanationsandinterpretationsofmodeldecisionsisalsoessentialinviewoftheimmensecomputationaleffortandcostsinvolvedwhenapplyingoradaptingalgorithms,oftenwithoutspecificknowledgeaboutthehardware,theparameter-tuningandthe
Introduction
FederalOfficeforInformationSecurity
7
energyconsumptiondemandedforthetrainingofamodel,whichattheendmightleadtoinconclusiveresults.Furthermore,itisalsodifficulttotrainmodelstoexpectedaccuracyevenwhentheprogramcodeandthetrainingdataareavailable.ChangesinTensorFlow,inGPUdrivers,orevenslightchangesinthedatasets,canhurtaccuracyinsubtleways[
46
,
45
].Inaddition,manyMLmodelsaretrainedonrestricteddatasets,forexamplethosecontainingsensitivepatientinformation,thatcan’tbemadepubliclyavailable[
1
].Whenprivacybarriersareimportantconsiderationsfordatasharing,socalledreplicationprocesseshavetobeused,toinvestigatetheextenttowhichtheoriginalmodelgeneralizestonewcontextsandnewdatapopulations,anddecidewhethersimilarconclusionstothoseoftheoriginalmodelcanbedelivered.However,thereexistalsocertainuniquechallengeswhichMLreproducibilityposes.ThetrainingofMLmodelsmakesuseofrandomness,especiallyforDL,usuallyemployingstochasticgradientdescent,regularizationtechniquesetc.[
3
].Randomizedproceduresresultindifferentfinalvaluesforthemodelparameterseverytimethecodeisexecuted.Onecansetallpossiblerandomseeds,howeveradditionalparameters,commonlynamedsilentparameters,associatedwithmoderndeeplearning,havebeenfoundtoalsohaveaprofoundinfluenceonbothmodelperformanceandreproducibility.High-levelframeworkslikeKerasarereportedtohidelow-levelimplementationdetailsandcomewithimplicithyperparameterchoicesalreadymadefortheuser.Alsohiddenbugsinthesourcecodecanleadtodifferentoutcomesindependenceoflinkedlibrariesanddifferentexecutionenvironments.Moreover,thecosttoreproducestate-of-the-artdeeplearningmodelsisoftenextremelyhigh.Innaturallanguageprocessing(NLP),transformersrequirehugeamountsofdataandcomputationalpowerandcanhaveinexcessof100billiontrainableparameters.Largeorganizationsproducemodels(likeOpenAI’sGPT-3)whichcancostmillionsofdollarsincomputingpowertotrain[
1
,
3
,
12
].Tofindthetransformerthatachievesthebestpredictiveperformanceforagivenapplication,meta-learnerstestthousandsofpossibleconfigurations.Thecosttoreproduceoneofthemanypossibletransformermodelshasbeenestimatedtorangefrom1millionto
3.2millionUSDwithusageofpubliclyavailablecloudcomputingresources[
39
,
3
].ThisprocessisestimatedtogenerateCO2emissionswithavolumewhichamountstothefivefoldofemissionsofanaveragecar,generatedoveritsentirelifetimeontheroad.Theenvironmentalimplicationsattachedtoreproducibilityendeavorsofthisrangearedefinitelyprohibitive[
3
].Aspossiblesolutiontothisproblem,therehasbeenproposedtheoptiontoletexpensivelargemodelsgetproducedonlyonce,whileadaptationsofthesemodelsforspecialapplicationsshouldbemadetransparentandreproduciblewiththeuseofmoremodestresources[
3
].
Organizationandaimofthiswork
ThemajorityofmethodsforexplainableAIareattributebased,theyhighlightthosedatafeatures(attributes),thatmostlycontributedtothemodel’spredictionordecision.Convolutionalneuralnetworks(CNN,orConvNet)arestate-of-the-artarchitectures,forwhichvisualexplanationscanbeproduced,forexamplewiththeGradient-weightedClassActivationMappingmethod(Grad-CAM)[
37
,
11
],whichisalsothemethodusedinthiswork.Inthesecondpartofthiswork,Grad-CAMexplanationsfortwopre-trainedandestablishedCNNmodels,whichuseTensorFlow,willbediscussedwithfocusonthedifferencesoftheirresults,whenthesametest-dataaregivenasinput.Itiswellknownthatwhendifferentexplainabilitymethodsareappliedonaneuralnetwork,differentresultsaretobeexpected.Thefactthatasingleexplainabilitymethod,whenappliedontwosimilarCNN-architectures,canproducedifferentresultsforthesametest-data,hasreceivedlessattentionintheliteraturebutisworthtoanalyzeinthereproducibilitycontext.Inthethirdpart,theownimplementation,trainingandresultsoftworelativelysimpleCNNmodelsarediscussed.DifferencesoftheGrad-CAM-explanationsforidenticalimagesclassifiedwiththesetwonetworksareanalyzed,withspecialfocusontheinfluenceofthecomputinginfrastructureonthemodelexecution.TheeffortstorenderthesetwomodelsdeterministicaredescribedinSection
3
indetail,againwithspecialfocusontheinfluenceofthecomputinginfrastructureontheresults.Successandlimitationsarenoted,thepartlyachieveddeterministiccodeislisted.ItisworthmentioningthatdifferentbehaviorsacrossversionsofTensorFlow,aswellasacrossdifferentcomputationalframeworksaredocumentedtobenormallyexpected.TensorFlowwarnsthatfloatingpointvaluescomputedbyops,maychangeatanytimeandusersshouldrelyonlyonapproximateaccuracyandnumericalstability,notonthe
Introduction
8
BundesamtfürSicherheitinderInformationstechnik
specificbitscomputed.Therecouldbefoundnoexperiencereports,astohowachangeofspecificbitscouldinfluenceMLresults,forinstanceinworstcasebyalteringthenetwork’sclassificationoritsexplanation,orboth.AccordingtoTensorFlow,changestonumericalformulasinminorandpatchreleases,shouldresultincomparableorimprovedaccuracyofspecificformulas,withthecautionthatthismightdecreasetheaccuracyfortheoverallsystem.AlsomodelsimplementedinoneversionofTensorFlow,cannotrunwithnextsubversionsandversionsofTensorFlow.Thereforepublishedcodewhichwasonceprovedtowork,ispossiblynottouseagainwithinshorttimeafteritscreation.Torunmorethanonesubversionsonthesamesystem,whenusinggraphicHWsupport,wasnotpossible.ThisworkaimsatdrawingattentiontothechallengesthatadheretocreatingreproducibletrainingprocessesinDeepLearninganddemonstratespracticalstepstowardsreproducibility,discussingtheirpresentlimitations.InSection
4
conclusionsofthisworkandviewstowardsfutureinvestigationsinthesamedirectionarepresentedinasummary.Ithastobenotedthattheimpactofwhatiscalledunderspecification,wherebythesametrainingprocessesproducesmultiplemachine-learningmodelswhichdemonstratedifferencesintheirperformance,isoutofscopeofthiswork[
18
].
Grad-CAMNN-Explanations
FederalOfficeforInformationSecurity
9
Grad-CAMNN-Explanations
NetworkarchitecturesandHW
Convolutionalneuralnetworks,originallydevelopedfortheanalysisandclassificationofobjectsindigitalimages,representthecoreofmoststate-of-the-artcomputervisionsolutionsforawidevarietyoftasks[
41
].AbriefbutcomprehensivehistoryofCNNcanbefoundinmanysources,forexamplein[
9
],wherebythetendencyhasalwaysbeentowardsmakingCNNincreasinglydeeper.DevelopmentsofthelastyearshaveledtotheInceptionarchitecture,whichincorporatesthesocalledInceptionmodules,thatexistalreadyinseveraldifferentversions.Anewarchitecture,whichinsteadofstacksofsimpleconvolutionalnetworks,containsstacksofconvolutionsitself,wasproposedbyFran?oisCholletwithhisExtremeInceptionorXceptionmodel.Xceptionwasprovedtobecapableoflearningricherrepresentationswithlessparameters[
9
].CholletdeliveredtheXceptionimprovementstotheInceptionfamilyofNN-architectures,byentirelyreplacingInceptionmoduleswithdepthwiseseparableconvolutions.Xceptionalsousesresidualconnections,placedinallflowsofthenetwork[
9
,
17
].Theroleofresidualswasobservedasespeciallyimportantfortheconvergenceofthenetwork[
44
],howeverCholletmoderatesthisimportance,becausenon-residualmodelshavebeenbenchmarkedwiththesameoptimizationconfigurationastheresidualones,whichleavesthepossibilityopen,thatanotherconfigurationmighthaveprovedthenon-residualversionbetter[
9
].Finally,thebuildingoftheimprovedXceptionmodelswasmadepossiblebecauseanefficientdepthwiseconvolutionimplementationbecameavailableinTensorFlow.TheXceptionarchitecturehasasimilarnumberofparametersasInceptionV3.ItsperformancehoweverhasbeenfoundtobebetterthanthatofInception,accordingtotestsontwolarge-scaleimageclassificationtasks[
9
].Forpracticaltestsinthiswork,InceptionV3andXceptionhavebeenchosenforresultscomparisons.ThetwonetworksarepretrainedonatrimmedlistoftheImageNetdataset,soastobeabletorecognizeonethousandnon-overlappingobjectclasses[
9
].
InceptionV3
Theexactdescriptionofthenetwork,itsparametersandperformancearegivenintheworkofChristianSzegedy[
42
].Thedescriptionofthetraininginfrastructurereferstoasystemof50replicas,(probablyidenticalsystems),runningeachonaNVidiaKeplerGPU,withbatchsize32,for100epochs.Thetimedurationofeachepochisnotgiven.
Xception
Chollethasused60NVIDIAK80GPUsforthetraining,whichtookadurationof3daystime.Thenumberofepochsisnotgiven.Thenetworkandtechnicaldetailsaboutthetrainingarelistedintheoriginalwork[
9
].
Xceptionhasasimilarnumberofparameters(ca.23million)asInceptionV3(ca.24million).TheHWexecutionenvironmentsemployedfortheheredescribedexperimentsarethefollowing:
HW-1:GPU:NVIDIATITANRTX:24GB(GDDR6),576NVIDIATuringmixed-precisionTensorCores,4608CUDACores.
HW-2:CPU:AMDEPYC7502P32-Core,SMT,2GHz(T:2.55GHz),RAM128GB.
HW-3:GPU:NVIDIAGeForceRTX2060:6GB(GDDR6),240NVIDIATuringmixed-precisionTensorCores,1920CUDACores.
HW-4:CPU:AMDRyzenThreadripper3970X32-Core,SMT,3.7GHz(T:4.5GHz),RAM256GB.
HW-5:CPU:AMDRyzen75800X8-Core,SMT,3.8GHz(T:4.7GHz),RAM64GB.
EachofthepretrainedmodelsisverifiedtodeliverthesameresultsforallhereconsideredCPUorGPUdifferentexecutionenvironments.Theclassificationsandtheaccordingnetworkexplanationsaredeterministicwhenperformedunderlaboratoryconditions,asalsoexpected.Plausibilityandstabilityissuesoftheexplanationswillbementionedparalleltothetests.
Grad-CAMNN-Explanations
10
BundesamtfürSicherheitinderInformationstechnik
InceptionV3
Inthispartexamplesofpredictions,calculatedwiththeInceptionV3networkarediscussed.InFig.
1
(a)and
(b)respectively,therearedepictedactivationheatmapswhichhavebeenproducedtoidentifythoseregionsoftheimagechow-cat,thatcorrespondtothedog(“chow”)andthecat(“tabby”)respectively.IdenticalrespectiveaccuracieshavebeencalculatedforeachclassificationindependentoftheemployedHW,aswasverifiedbythetestsperformedwithallHW-environmentslistedattheendofsection
2.1
.The“chow”hasbeenpredictedwith30%probabilityandstandsinthefirstplaceonthetop-predictions-list,whilethecatgetsthethirdpositionwithaprobabilityof2.4%.
(a) (b)
Figure1:chow-cat:Grad-CAMexplanationsofInceptionV3fortheidentificationofthedog“chow”(a),inthefirstplaceonthetop-predictions-listandthecat“tabby”(b),inthethirdplaceonthetop-predictions-list.Thesecondplaceoccupiesa“Labradordog”.
InFig.
2
,heatmapsproducedbytheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b),andthe“Persiancat”(c)respectively,havebeendemonstratedfortheimagespaniel-kitty.
(a) (b) (c)
Figure2:spaniel-kitty:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),see
Table1
.
Grad-CAMNN-Explanations
Class
HW-2
HW-1
1 cockerspaniel
0.56762594
0.56761914
2 toypoodle
0.08013367
0.08014054
3 clumber
0.02106595
0.02107035
4 DandieDinmont
0.01964365
0.01964012
5 Pekinese
0.01867950
0.01868443
6 miniaturepoodle
0.01846011
0.01846663
7 Blenheimspaniel
0.01425239
0.01424699
8 Maltesedog
0.01124849
0.01124578
9 Chihuahua
0.01103328
0.01103479
10 Norwichterrier
0.00741338
0.00741514
11 Sussexspaniel
0.00703137
0.00703068
12 Yorkshireterrier
0.00689254
0.00689154
13 Norfolkterrier
0.00662250
0.00662296
14 Lhasa
0.00609926
0.00609862
15 Pomeranian
0.00608485
0.00608792
16 Persiancat
0.00489533
0.00489470
17 goldenretriever
0.00428663
0.00428840
Table1:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty,seeFig.
2
.
In
Table1
therearelistedthescoresofthefirst17classesonthetop-predictions-list,ascalculatedintwoHWexecutions(HW-1,HW-2).Thepredictionscoresarealmostidentical,asisobviousbycomparingthecolumnsin
Table1
,whileinthefewcases,whenslightdifferencesexistintheprobabilityvalues,thesedifferencesappearonlyafterthefourthdecimalplace.The“cockerspaniel”isthetoppredictionandrepresentsactuallythecorrectclassificationofthedograce,predictedwithaprobabilityofalmost57%,whilethe“Persiancat”inplace16ofthelist,whichisalsoacorrectprediction,hasaprobabilityofapproximately0.5%.The“toypoodle”with8.0%probabilitystandsinthesecondplaceonthelist,whiletherestoflistplaces,downtoplacesixteenofthe“Persiancat”,arealloccupiedbydograces(see
Table1
).
Soundnessandstabilityofexplanations
Acarefulobservationofthedeliverednetworkexplanationsshowsthattheyarepartlyarbitraryandhardlyintuitive,andthisindependentlyofawrong,orrightclassprediction.Forexample,thenetworkreasoningbehindthe“toypoodle”classificationinFig.
2
(b),whichiswrongasfarastheraceofthedogisconcerned,butrightasfarastheanimalcategoryidentified(adog),cannotbenotedassound.Themainreasonisbecausethemostactivated,andthereforethemostrelevanttothetargetidentificationregion(markedred),pointstoapartoftheimagethatliesinemptyspace,beyondthecontourofthetarget.Themarkedredregionliesclosetowhatonecoulddescribeasagenericfeature,thepaws,whichiscommontoavarietyofanimals.Atoogenericfeatureofferslittleconfidenceinbeingagoodexplanation,ifassumedthatitisonlytheaccuracyofthefeature’slocalizationintheimagethatfails.Besides,thealgorithmcouldhavefocusedonthevicinityofthepawsoutofreasonsnotdirectlyassociatedwiththerecognitionofthe“poodle”.Observingthattheexplanationfortheidentificationofthe“Persiancat”,seeFig.
2
(c),highlightsthesamepaws,makestheunambiguityordefinitenessoftheexplanationsquestionable.Importantisalsotheinvestigationofthestabilityandconsistencyofthenetwork’sexplanations,astheyrelatetothereproducibilityofthenetworktoo.Forexample,itwouldbeexpectedthatanetworkwhichconcentratedonthedog’sheadtoexplainthefirstplaceofthetop-predictions-list,the“cockerspaniel”inFig.
2
(a),wouldprobablyalsopicktheheadtomainlyidentifythesecondmostprobableclassificationonthelist,whichthe“toypoodle”,seeninFig.
2
(b).Thisishowevernotthecase,whichmakestheconsistencybehindthelogicofexplanationsdoubtful.Obviously,thecat’sheadalsoreceiveshardlyanyattentionfortheexplanationoftherecognitionofthecatinFig.
2
(c).Itisnotpossibletoidentifysomecertainstrategywhichthenetwork
FederalOfficeforInformationSecurity 11
12
BundesamtfürSicherheitinderInformationstechnik
Grad-CAMNN-Explanations
consistentlyemploysinordertoexplainclassifications,inthiscaseofanimals.Forfurtherinvestigations,asmallpartoftheimagespaniel-kitty,namelythepartcontainingthepaws,hasbeenremovedfromtheimageandthetop-predictions-listhasbeencalculatedagain.Withthenewtestimage,spaniel-kitty-paws-cutasinput,the“cockerspaniel”keepsthefirstplaceonthetop-predictions-list,see
Table2
,howeverthe“Persiancat”climbesnowfromplace16toplace2withaclassificationprobabilityrisingfrom0.5%to30%,whilethe“toypoodle”fallsdowntotheplace4ofthelist.
Class
HW-2
HW-1
1 cockerspaniel
0.43387938
0.43393657
2 Persiancat
0.03001592
0.03000891
3 Pekinese
0.02654952
0.02654130
4 toypoodle
0.01810920
0.01810851
5 DandieDinmont
0.01457902
0.01457707
6 Sussexspaniel
0.01415453
0.01415372
7 Goldenretriever
0.01363987
0.01363916
8 Miniaturepoodle
0.01088122
0.01088199
Table2:InceptionV3:ClassificationProbabilitiesfortheimagespaniel-kitty-paws-cut.
In
Table2
,thenewtop-fourpredictedclassesandtheirnewscoresaredisplayed.Therearenogreatchangesintheexplanationconcerningthe“cockerspaniel”forthemodifiedimage,theheadbeingtheparthighlightedagain.Howeverthevisualexplanationsfortheidentificationofthe“toypoodle”andthe“cat”havechangedconsiderably,asinFig.
3
tosee.
(a) (b) (c)
Figure3:spaniel-kitty-paws-cut:Grad-CAMexplanationofInceptionV3fortheidentificationofthe“cockerspaniel”(a),the“toypoodle”(b)andthe“Persiancat”(c),whenthepawsareremovedfromtheimage(compareresultsofFig.
2
).
The“toypoodle”isnowoverlayedbyadoubleheatspot,aminoroneattheendofthecat’sbodyandthemainonetotherightofthecat’shead,bothlyingoutsidethecontouroftherecognized“poodle”,seeFig.
3
(b).Althoughinthiscasetheclassificationiscorrect,theexplanationdoesn’tmakesenseatall,becausetheactivationregionliesentirelyoutsidethetarget(“toypoodle”).Onecouldarguethatatleasttheexplanationforthe“Persiancat”inFig.
3
(c)hasbeenimproved,incomparisontotheunchangedimage.Thehotactivationregionapproachesnowthecat’sheadinsteadofthepawswhichismorecharacteristicofthetarget.However,aconsiderablepartoftheclassactivationmapping(markedred),stillliesbeyondthecontourofthecatandtherefore,atleastthepositionoftherecognizedtarget,canbedescribedasnotaccurateorevenwrong.InceptionV3deliversidenticalresults,withrespecttochangingexecutionenvironments,thereforetheexplanationsandclassificationsofthenetworkareprovedtobedeterministic
FederalOfficeforInformationSecurity
13
Grad-CAMNN-Explanations
underlaboratoryconditions,thatiswhennointentionalorunintentionalperturbationsareinsertedtothetestdata.
Xception
Inanalogyto
2.2
,objectdetectionsandtheirexplanationscalculatedwiththeXceptionnetworkareherediscussed.InFig.
4
(a)and(b)therearepresentedtheactivationheatmaps,producedbythenetworkfortheidentificationoftheimageregionsthatcorrespondtothe“dog”(“chow”),andthe“cat”respectively,(hereidentifiedas“Egyptiancat”,whereasInceptionV3identifiedthecatasa“Tabbycat”,compareFig.
1
).
(a)“chow” (b)“Egyptian_cat”
Figure4:chow-cat:Grad-CAMexplanationsofXceptionfortheidentificationofthe“chow”(a),inthefirstplaceofthetop-predictions-listandthe“Egyptiancat”(b),inthesecondplace.Thirdonthelististhe“tigercat”andfourththe“tabbycat”.Foracomparison,theorderofexplanationsgeneratedbyInceptionV3isgiveninthecaptionofFig.
1
.
InFig.
5
theactivationmapscorrespondingtotheidentificationofthe“cockerspaniel”,the“Frenchbulldog”,the“toypoodle”andthe“Persiancat”respectivelyaredemonstrated.SimilarlytotheInceptionV3case,describedintheprevioussection,allpredictionscoresarealmostidenticalbetweenallHWenvironmentexecutions.
Grad-CAM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防設(shè)施招投標(biāo)合同
- 大型場館建設(shè)合同樣式
- 食品加工三方施工合同
- 機場VIP室花卉租用協(xié)議
- 劇院清潔工招聘協(xié)議書
- 兒童玩具專賣店裝修施工合同
- 游艇碼頭建造師合同模板
- 豪華郵輪廚師長聘用合同
- 地鐵站雨污治理工程協(xié)議
- 服裝店財務(wù)人員勞動合同
- 操作規(guī)程與保養(yǎng)作業(yè)指導(dǎo)書-注塑機
- 2024重慶藝術(shù)統(tǒng)考美術(shù)專業(yè)一分一段表
- 中職語文基礎(chǔ)模塊上冊-第一次月考卷(1)【知識范圍:1-2單元】解析版
- 國開本科《城市管理學(xué)》期末考試題庫及答案
- 房地產(chǎn)公司總經(jīng)理職位面試問題
- 進修骨科匯報課件
- 中職班級建設(shè)方案課件
- 2023年廣東能源集團校園招聘考試真題及答案
- 古建工程監(jiān)理規(guī)劃(范本)
- 【良品鋪子應(yīng)收賬款現(xiàn)狀及其風(fēng)險分析(論文10000字)】
- 高中物理必修一前兩章測試題(含答案)
評論
0/150
提交評論