版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
DeepHyd:ADeepLearning-basedArtificialIntelligenceApproachfortheAutomatedClassificationofHydraulicStructuresfromLiDARandSonarData
WenwuTang,Ph.D.Shen-EnChen,Ph.D.JohnDiemer,Ph.D.CraigAllan,Ph.D.
TianyangChen,GraduateResearchAssistantZacherySlocum,GraduateResearchAssistantTariniShukla,GraduateResearchAssistant
VidyaShubhashChavan,Ph.D.,FormerGraduateResearchAssistantNavanitSriShanmugam,GraduateResearchAssistant
CenterforAppliedGeographicInformationScienceDepartmentofGeographyandEarthSciencesDepartmentofCivilandEnvironmentalEngineeringSchoolofDataScience
UniversityofNorthCarolinaatCharlotte
NCDOTProject2019-03FHWA/NC/2019-03
i
January2022
PAGE\*roman
viii
DeepHyd:ADeepLearning-basedArtificialIntelligenceApproachfortheAutomatedClassificationofHydraulicStructuresfromLiDARandSonarData
FinalReport
(ReportNo.FHWA/NC/2019-03)
To:NorthCarolinaDepartmentofTransportation(ResearchProjectNo.RP2019-03)
Submittedby
WenwuTang1,2,3,*,Shen-EnChen4,*,JohnDiemer2,*,CraigAllan1,2,*,TianyangChen1,2,**,ZacherySlocum1,2,**,TariniShukla1,4,**,VidyaShubhashChavan4,**,NavanitSriShanmugam4,**
1CenterforAppliedGeographicInformationScience
2DepartmentofGeographyandEarthSciences
3SchoolofDataScience
4DepartmentofCivilandEnvironmentalEngineeringUniversityofNorthCarolinaatCharlotte,Charlotte,NC28223
*:PIs
**:GraduateResearchAssistants
ContactWenwuTang,Ph.D.
Phone:(704)687-5988;
Fax:(704)687-5966;
Email:
wtang4@
January2022
TechnicalReportDocumentationPage
1. ReportNo.
FHWA/NC/2019-03
2. GovernmentAccessionNo.
…leaveblank…
3. Recipient’sCatalogNo.
…leaveblank…
4.TitleandSubtitle
DeepHyd:ADeepLearning-basedArtificialIntelligenceApproachfortheAutomatedClassificationofHydraulicStructuresfromLiDARandSonarData
5. ReportDate
January30th,2022
6. PerformingOrganizationCode
…leaveblank…
7. Author(s)
WenwuTang,Shen-EnChen,JohnDiemer,CraigAllan,TianyangChen,ZacherySlocum,TariniShukla,VidyaShubhashChavan,NavanitSriShanmugam
8. PerformingOrganizationReportNo.
…leaveblank…
9. PerformingOrganizationNameandAddress
CenterforAppliedGeographicInformationScienceDepartmentofGeographyandEarthSciences,
UniversityofNorthCarolinaatCharlotte,Charlotte,NC28223
10.WorkUnitNo.(TRAIS)
…leaveblank…
11.ContractorGrantNo.
…leaveblank…
12.SponsoringAgencyNameandAddressNorthCarolinaDepartmentofTransportationResearchandDevelopmentUnit
13.TypeofReportandPeriodCoveredFinalReport
104FayettevilleStreetRaleigh,NorthCarolina27601
07/01/2018-12/31/2021
14.SponsoringAgencyCodePR2019-03
SupplementaryNotes:
…leaveblank…
16.Abstract
Monitoringtheconditionsofhydraulicstructuressuchasbridgesandculvertsisessentialinwarrantingthesafetyandsustainabilityoftransportationinfrastructure.ThisisparticularlyimportantforNorthCarolinaasmorethan8percentofNCbridgeshavebeenfoundinpoorconditionsandneedimmediatemaintenance.Lidarandsonartechnologieshavebeenincreasinglyappliedtosupportthismonitoringneed.However,theprocessingandclassificationofpointclouddatageneratedfromLiDARandsonartechniquesrepresentsachallengeashydraulicstructuresareoftencomplicatedingeometriccharacteristicsandconsiderablelaborandtimeareneededfortheprocessingandclassification.
Toaddressthischallenge,inthisproject,wedevelopedDeepHyd,adeeplearning-based3Dmodelingframeworkandsoftwaretoolsfortheautomatedclassificationofpointclouddataofhydraulicstructures.Wecollectedfielddatafrom11sitesintheGreaterCharlotteMetropolitanregionfortrainingandvalidationofthedeeplearningalgorithms.ThefielddatacollectioncombinestheuseofterrestrialLiDAR,sonar,totalstation,survey-gradeGPS,anddrone.Thedeeplearningalgorithmthatweusedforpointcloudclassificationisastate-of-the-art3Dartificialintelligencetechnique.Weusedatwo-tieredmodelingapproachtotraindeeplearningalgorithmsusingannotatedpointclouddata:classificationofbridgesfromvegetationandground,andclassificationofspecificbridgecomponentsincludingbeam,pier,railing,andretainingwalls.Weimplementedscientificworkflowstoautomatetheclassificationofpointclouddataofhydraulicstructuresusingdeeplearning.Ourmajorfindingsare:
1)our3DdeeplearningalgorithmsinDeepHydachievehighclassificationperformanceonpointclouddataofhydraulicstructures.2)deeplearningcaneffectivelyhandletheclassificationoflargevolumesofpointclouddata,butthetrainingofdeeplearningalgorithmsrequireslargeamountsofannotateddata.3)annotatedpointclouddataserveasafoundationdatabasefortheautomatedclassificationofhydraulicstructuresusingartificialintelligencetechniques.Moreannotatedpointclouddata,whichcoveralternativetypesofhydraulicstructures,areneededforfurtherimprovingclassificationperformance.
17.KeyWords
Pointcloudclassification,Hydraulicstructures,Deeplearning,ArtificialIntelligence
18.DistributionStatement
…leaveblank…
19.SecurityClassif.(ofthisreport)Unclassified
20.SecurityClassif.(ofthispage)Unclassified
21.No.ofPages60
22.Price
…leaveblank…
FormDOTF1700.7(8-72) Reproductionofcompletedpageauthorized
Disclaimer
Thecontentsofthisreportreflecttheviewsoftheauthor(s)andnotnecessarilytheviewsoftheUniversity.Theauthor(s)areresponsibleforthefactsandtheaccuracyofthedatapresentedherein.ThecontentsdonotnecessarilyreflecttheofficialviewsorpoliciesofeithertheNorthCarolinaDepartmentofTransportationortheFederalHighwayAdministrationatthetimeofpublication.Thisreportdoesnotconstituteastandard,specification,orregulation.
Acknowledgements
ThisprojectissupportedbytheNorthCarolinaDepartmentofTransportation.Specifically,theauthorsowethankstotheSteeringandImplementationCommittee:includingMatthewLauffer(Chair),JohnW.Kirby,TomLangan,GaryThompson,PaulJordan,MarkSwartz,MarkWard,DerekBradner,BrianRadakovic,KevinFischer.WethankMatthewMacon,RodneyHough,DonaldEarly,fromUASprogramandPhotogrammetryUnit,NCDOTfortheirhelponUAStesting.WethankNCDOTITfortheirhelpondeployingandtestingthesoftware.
ExecutiveSummary
Monitoringtheconditionsofhydraulicstructuressuchasbridgesandculvertsisessentialinwarrantingthesafetyandsustainabilityoftransportationinfrastructure.ThisisparticularlyimportantforNorthCarolinaasmorethan8percentofNCbridgeshavebeenfoundinpoorconditionsandneedimmediatemaintenance.LiDARandsonartechnologieshavebeenincreasinglyappliedtosupportthismonitoringneed.However,theprocessingandclassificationofpointclouddatageneratedfromLiDARandsonartechniquesrepresentsachallengeashydraulicstructuresareoftencomplicatedintheirgeometriccharacteristicsandconsiderablelaborandtimeareneededfortheprocessingandclassificationoflargepointclouddatasets.
Toaddressthischallenge,inthisproject,wedevelopedDeepHyd,adeeplearning-based3Dmodelingframeworkandsoftwaretoolsfortheautomatedclassificationofpointclouddataofhydraulicstructures.Wecollectedfielddatafrom11sitesintheGreaterCharlotteMetropolitanregionforthetrainingandvalidationofthedeeplearningalgorithms.Thefielddatacollectioncombinestheuseofavarietyofsurveyinstruments,includingterrestrialLiDAR,sonar,totalstation,survey-gradeGPS,anddrone-basedphotogrammetry.Thedeeplearningalgorithmthatweutilizedforthepointcloudclassificationisastate-of-the-art3Dartificialintelligencetechniquebasedonconvolutionalneuralnetworks.Weusedatwo-tieredmodelingapproachtotraindeeplearningalgorithmsusingannotatedpointclouddata:classificationofbridgesfromvegetationandground,andclassificationofspecificbridgecomponentsincludingbeam,pier,railing,andretainingwalls.Weimplementedscientificworkflowstoautomatetheprocessingandclassificationofpointclouddataofhydraulicstructuresusingdeeplearning.
ConsideringtheuniquegeographicaldivisionsinNorthCarolinafromthemountainridgesintheAppalachiantotheAtlanticcoastalplain,agreatdiverseofhighwaybridgetypesinterconnectedthestateandtheautomatedbridgecomponentclassificationtoolrepresentsaparadigmshiftintransportationmanagement.Ourmajorfindingsaresummarizedbelow:
Our3DdeeplearningalgorithmsinDeepHydachievehighclassificationperformanceonpointclouddataofhydraulicstructures.Thetwo-tieredgeospatialmodelingdesigncaneffectivelysupport1)theclassificationofhydraulicstructures,vegetation,andgroundsurfaces,and2)theclassificationofspecificbridgecomponents.
Transferlearningusingpre-trainedmodelsandhyperparameteranalysisastwoapproachesatthedeeplearningalgorithmlevelcansignificantlyenhancethepointcloudclassificationusingstate-of-the-artartificialintelligencetechniques.
3Ddeeplearningcaneffectivelyhandletheclassificationoflargevolumesofpointclouddata,butthetrainingofdeeplearningalgorithmsrequireslargeamountsofannotateddata.
AnnotatedpointclouddataserveasafoundationdatabasefortheautomatedclassificationofhydraulicstructuresscannedbyLiDARusingartificialintelligencetechniques.Moreannotatedpointclouddata,whichcoverawiderrangeofhydraulicstructures,areneededforfurtherimprovingclassificationperformance.
TableofContent
TitlePage ii
Disclaimer iv
Acknowledgements v
ExecutiveSummary vi
ListofFigures ix
ListofTables x
ListofAcronyms xi
INTRODUCTION 1
Background 1
ResearchNeedDefinition 2
ResearchObjectives 2
ReportOrganization 3
LITERATUREREVIEW 4
PointCloudDatafromLiDARandSonar 4
DeepLearning 5
DeepLearningforPointCloudClassification 6
RESEARCHMETHODOLOGY 8
FieldData 8
FieldSites 8
FieldDataCollectionMethods 11
TerrestrialLidarSurvey 11
BathymetricSurvey:SonarandTotalStationDataCollection 12
3DimagereconstructionusingdroneandRGBcamera 14
SummaryofFieldDataCollected 21
DeepLearning-basedPointCloudClassification 23
ModelDesign 23
AnnotationofPointCloudData 23
Selectionof3DDeepLearningAlgorithmsforPointCloudClassification 27
Transferlearningforimproved3DDeepLearningforPointCloudClassification 27
TrainingandValidationof3DDeepLearningforPointCloudClassification 29
HyperparameterTuning:LearningRateandNumberofIterations 31
HyperparameterTuning:BlockSizeandNumberofPointsperBlock 35
ModelInferencingforthePredictionofPointCloudClassification 39
InferencingResultsofModel1fortheClassificationofBridges,Vegetation,and
Ground 39
InferencingResultsofModel2fortheClassificationofBridgeComponents 41
ScientificWorkflowsforModelAutomation 43
Pre-processingofdata 44
Post-ProcessingofData 45
SoftwareImplementation 48
FindingsandConclusions 49
Recommendations 52
ImplementationandTechnologyTransferPlan 53
References 54
Appendix 56
ListofFigures
Figure3.1.WebGISportalforthefieldsurveysintheproject(numberlabelsareIDsofsites) 10
Figure3.2.IllustrationofcollectedLiDARpointcloud 12
Figure3.3.BathymetryatSite16,PharrMillBridge,CabarrusCounty,NC 13
Figure3.4.FlightplanforunmannedaerialsystemoperationatSite#5 15
Figure3.5.Orthomosaic(with3Dinformation)generatedusingStructurefromMotiontechniqueforSite
#5 17
Figure3.6.FlightplanIforUASoperationatsite16 18
Figure3.7.FlightplanIIforUASoperationatsite16 19
Figure3.8.Orthomosaic(with3Dinformation)generatedusingSfMtechniqueforSite#16 21
Figure3.9.IllustrationofmapoffusedLidarandsonardata(Lidardataareingray;sonardataareinblue;
site#:16;PharrMillRoadsite;seeTable3.1forsiteinformation) 22
Figure3.10.Tieredspatialmodelingframeworkfordeeplearning-basedpointcloudclassificationof
hydraulicstructures 23
Figure3.11.Typologyofannotationofpointclouddataofhydraulicstructures 24
Figure3.12.Illustrationofannotatedpointcloudscollectedfromthefieldworkinthisproject 25
Figure3.13.Illustrationofannotatedpointcloudsscannedfrompreviousprojectscollectedpriortothis
study(Chen,unpublisheddata) 25
Figure3.14.Aggregationofannotatedpointclouddatafordeeplearning-basedclassification(One
annotatedscanfromSite#5;seeTable3.1forsiteinformationasneeded) 26
Figure3.15.ArchitectureofConvPointsegmentationnetworksfor3Ddeeplearning-basedpointcloud
classification 29
Figure3.16.Illustrationoflearningcurvesfortrainingandvalidationofdeeplearningalgorithmfor
Model1inresponsetonumberofiterations 32
Figure3.17.Illustrationoflearningcurvesfortrainingandvalidationofdeeplearningalgorithmfor
Model1inresponsetolearningrate 32
Figure3.18.Illustrationoflearningcurvesfortrainingandvalidationofdeeplearningalgorithmfor
Model2inresponsetolearningrate 34
Figure3.19.ResponsesurfaceofIntersectionoverUnionforModel1betweenblocksizeandnumberof
pointsperblock 36
Figure3.20.ResponsesurfaceofIntersectionoverUnionforModel2betweenblocksizeandnumberof
pointsperblock 37
Figure3.21.ComparisonbetweenannotatedpointcloudandpredictedpointcloudfromModel1 37
Figure3.22.ComparisonbetweenannotatedpointcloudandclassifiedpointcloudbyModel2 38
Figure3.23.DemonstrationofpredictionresultsofModel1trainedonbridge-vegetation-grounddataset.
. 40
Figure3.24.DemonstrationofpredictionresultsofModel2trainedonbridgecomponentdataset.A:Site#
2.D:Site#5.B,C,E,andFarefrompreviousprojects 42
Figure3.25.TheframeworkoftheDeepHydscientificworkflows(manualmodulesareingrayand
automatedmodulesareinblue) 43
Figure3.26.Inputandoutputfileformatsforscientificworkflowsofmodeltrainingandinferencefor
pointcloudclassification 45
Figure3.27.SnapshotofthemainwebpageoftheWebportalforusingDeepHydforpointcloud
classification 47
Figure3.28.Snapshotofweb-basedvisualizationofclassifiedpointcloudsinDeepHyd 47
ListofTables
Table2.1.ListofUAS-compatiblebathymetricLiDARs(SD:secchidiskdepth) 5
Table3.1.Listofsurveysitesanddatacollectedfortheproject 9
Table3.2.Summaryoffieldworkconductedfortheproject. 10
Table3.3.Summaryofdatacollectioninstruments 11
Table3.4.EstimationofaveragewateredgeelevationatSite#16(7transectswereused 14
Table3.5.ListofgroundcontrolpointsforSite#5. 16
Table3.6.Localizationaccuracypergroundcontrolpoint(unit:USSurveyfeet) 16
Table3.7.Statisticsoferrorsbetweeninitialandcomputedimagepositions 16
Table3.8.Summaryofkeypointsandmatchedkeypointsperimage 16
Table3.9.Informationoncameracalibration 17
Table3.10.ListofgroundcontrolpointsforSite#16. 19
Table3.11.Localizationaccuracypergroundcontrolpoint(std:standarddeviation;unit:USsurveyfeet).
. 20
Table3.12.Statisticsofinitialandcomputedimagepositions(std:standarddeviation) 20
Table3.13.Summaryof2Dkeypointsandmatched2Dkeypointsperimage 20
Table3.14.Informationoncameracalibration. 20
Table3.15.Listofsurveysitesanddatacollectedfortheproject(seeTable3.1forsiteinformation) 22
Table3.16.Summaryoffielddatatypescollected 22
Table3.17.Bridge-vegetation-grounddataset 26
Table3.18.Bridge-componentdataset 26
Table3.19.Accuracyperformanceofthetop5deepneuralnetworksontheSemantic3Dbenchmark 27
Table3.20.Labeled3Dpointcloudbenchmark 28
Table3.21.ListofhyperparametersfortheDeepHydsystem 30
Table3.22.SummaryofexperimentaldesignofModel1aswellasGPUcomputingperformance 33
Table3.23.SummaryofexperimentaldesignofModel2aswellascomputingtime 34
Table3.24.Hyperparametersof3DdeeplearningalgorithmforModel1. 35
Table3.25.Hyperparameterconfigurationsof3DdeeplearningalgorithmforModel2 35
Table3.26.Confusionmatrixofpointcloudclassificationusingapointcloudscanfromafieldsite(Site
#16:PharrMillsitewasused) 38
Table3.27.ConfusionmatrixofclassificationresultsbyModel2(ascanfromSite#16:PharrMillsite
wasused) 39
Table3.28.ResultsofpointcloudclassificationperformanceofModel1 39
Table3.29.ConfusionmatrixofpointcloudclassificationforModel1intermsofpercentage. 40
Table3.30.ResultsofModel2performanceforthepointcloudclassificationofbridgecomponents. 41
Table3.31.ConfusionmatrixofclassificationresultsforModel2(Wall:retainingwall) 41
Table3.32.ListoflabelsforclassesusedbytheDeepHydsystem 45
Table3.33.ListofkeysoftwareorlibrariesusedfortheimplementationofDeepHyd 48
TableA1.WeatherconditionsforUASoperationonSite#5 56
TableA2.PlanningparametersfortheflightplanforSite#5. 56
TableA3.WeatherdetailsofUASoperationonSite#16(seeTable3.1forsiteinformation) 56
TableA4.PlanningparametersfortheflightplanonSite#16. 56
TableB.1.ComputingtimeforusingDeepHydforpointcloudclassificationonsampledatasets 57
ListofAcronyms
AGL
AboveGroundLevel
AI
ArtificialIntelligence
CNN
ConvolutionalNeuralNetworks
CPU
CentralProcessingUnit
DEM
DigitalElevationModel
DSM
DigitalSurfaceModel
FAA
FederalAviationAdministration
GCP
GroundControlPoints
GIS
GeographicInformationSystem
GNSS
GlobalNavigationSatelliteSystem
GPS
GlobalPositioningSystem
GPU
GraphicsProcessingUnits
IO
InternalOrientation
IoU
IntersectionoverUnion
LiDAR
LightDetectionandRanging
MLP
Multi-layeredperception
NAD
NorthAmericaDatum
RMSE
RootMeanSquareError
RTK
Real-TimeKinematicPositioning
SfM
StructurefromMotion
Sonar
SoundNavigationandRanging
UAS
UnmannedAerialSystems
VRS
VirtualReferenceStation
PAGE
32
INTRODUCTION
Background
ThestudyofhydraulicstructuressuchasbridgesandculvertshasreceivedconsiderableattentioninparticularastheupgradeofphysicalinfrastructurehasbecomeanationalpriorityfortheUnitedStates(ASCE2021).Monitoringtheconditionofhydraulicstructuressuchasbridgesplaysapivotalroleinwarrantingthesafetyoftransportationinfrastructureandtheirsustainability.ThemonitoringofhydraulicstructuresinNChasbecomeanurgentneed,inparticularforthesystematicmanagementofNCDOT’sassets,thedevelopmentofguidelinesforroadwaydrainageandhighwaystormwatermanagement,anddocumentationofcompliancewithNCDOTandfederalstandardsfrom,e.g.,FEMAandFHWA.InNC,eachoftheState’sapproximately13,500bridgesneedstobeinspectedbyNCDOTeverytwoyearsorlesstoensuretheirstructuralstabilityandhealthforpublicsafety(NCDOT2022).Approximately8.2%oftheNCbridgesareevaluatedasinpoorcondition(byMarch2021)andinneedofimmediatemaintenance.
AsuiteoftechniquessuchasLiDARandsonar(Watsonetal.2013,BurgueraandOliver2016)havebeenextensivelyusedforthedetectionandmeasurementofhydraulicstructures.Forexample,LiDARtechniques(typicallyincludingairborne,terrestrial,andmobile)havebeenrecognizedasapowerfulandhigh-resolutionapproachforthedocumentationof3Dshapesofhydraulicstructuresandtheirsurroundingenvironments(FerozandAbuDabous2021).Atthesametime,sonartechniquescandelineate3Dcharacteristicsofunderwatertopography.Thecombinationofthesetwotechniquesprovidessupportforthemonitoringofhydraulicstructuresforbothabove-andunder-waterconditions.Theircapabilitiesinthequantificationof3Dcharacteristicsofhydraulicstructureshavebeenwellrecognized,especiallywhencomparedtotraditionalvisualinspectionmethodsthatareoftensubjectiveandlaborintensive(PrendergastandGavin2014).
TheuseofLiDARandsonartechniquesleadstothegenerationoflarge3Dpointclouddatasets.Thesepointclouddataareofgreathelpforrepresenting3Dcharacteristicsofhydraulicstructures,whichareoftenfedintohydraulicsmodelsforthein-depthinvestigationofhydraulicstructures.However,thesepointclouddataareunstructuredandtypicallyinlargevolumes.Theprocessingoftheselargepointclouddatatendstobebothlabor-andcomputation-intensive,whichposesasignificantchallengeintheclassificationofthesedata.Further,differenttypesofhydraulicstructuresexistandtheirgeometriccharacteristicsmaybesophisticatedandchangeovertime.Thisfurthercomplicatestheclassificationofthesepointclouddataforthemonitoringofhydraulicstructures.Inotherwords,theclassificationofpointclouddatacollectedfromLiDARandsonartechniquesrepresentsabigdata-drivenchallenge(TangandFeng2017).
ArtificialintelligenceholdsgreatpotentialinresolvingthechallengesassociatedwiththeclassificationofpointclouddatafromLiDARandsonar.Overthepastfewyears,artificialintelligencetechniques,representedbydeeplearning,havebeenincreasinglydevelopedandappliedtoreal-worldproblemsolving(Goodfellowetal.2016,LeCunetal.2015).Thistrend
willcontinueasartificialintelligencehasbecomeanation-widepriority.Deeplearningtechniqueshavebeenappliedtovariousstudies(e.g.,unmanneddriving,naturallanguageprocessing,remotesensing,andmedicalstudies)tosupporttheneedsofclassification,patternrecognition,andcomputervision(Guoetal.2016,Goodfellowetal.2016).Deeplearningtechniqueshavebeenhighlytoutedbecauseoftheirsuperiorperformanceoverconventionalmodelingapproaches.Theuseofdeeplearningtechniquesoftenleadstosignificantsavingsinlaborandcosts.
ResearchNeedDefinition
AccordingtoNCDOTResearchNeedStatement(RNS#:9102),theNCDOTHydraulicUnitisinterestedinutilizinghigh-resolutionLiDARandbathymetricsonardataforthedetectionandclassificationofhydraulicstructuresandtheiras-builtconditions.Thisrequirestheuseofartificialintelligencemethodstosupporttheautomatedclassificationofpointclouddataforthedetectionandevaluationofhydraulicstructures.AnAI-basedpointcloudclassificationsolutionwillbringsignificantbenefitsforNCDOTwhenLiDARandsonartechniquesareblendedandusedtofacilitatethedevelopmentofguidelinesforhighwaystormwatermanagement,roadwaydrainage,andhydraulicdesignandevaluation.
ResearchObjectives
Theoverallobjectiveofthisprojectistodevelopaspatiallyexplicit3Dmodelingframeworkandsoftwarepackagethatarebasedondeeplearningasacutting-edgeartificialintelligenceapproachforautomatedandreliableclassificationofhydraulicstructuresfrompointclouddata(DeepHyd;seeFigure1.1).Thedeeplearning-basedartificialintelligencesolution(DeepHyd,includingframeworkandsoftwaretools)canhelpresolvethechallengesassociatedwiththeextractionandclassificationofhydraulicfeaturesfromLiDARandsonardatawhilealsohavingtheflexibilityandpotentialtoincorporateadditionalmanualsurveydataandinformationfromdigitalphotography.
ToaddresstheNCDOTresearchneeds,thisprojecthasfourgoalsestablishedfortheDeepHydmodelingframework:
Goal1:tocollectacombinationofLiDAR,sonar,GPS,aerialphotometricandplanesurveydatafrom11NCDOThydraulicstructuresinCabarrus,Gaston,IredellandMecklenburgcounties,NC
Goal2:topre-processthedatacollectedfromGoal1.
Goal3:developadeeplearning-basedartificialintelligenceapproachfortheclassificationofthepointclouddataintohydraulicstructuresofinterest.
Goal4:automatethisentireclassificationeffort(training,validation,andprediction)usingscientificworkflows.
Figure1.1.DesignofDeepHyd:Adeeplearning-based3DmodelingframeworkfortheautomatedclassificationofhydraulicstructuresfromLiDARandsonardata.
ReportOrganization
Therestofthisreportisorganizedinthefollowingstructure.Section2presentsaliteraturereviewexaminingtheroleofdeeplearningmethodologiesintheclassificationoflargevolumesofpointclouddatageneratedfromLiDARandsonarscans.Section3focusesondiscussingtheresearchmethodologyemployedinthisstudy,includingfielddatacollection,deeplearning-basedpointcloudclassification(trainingandvalidationofdeeplearningalgorithms,modelinferencingorpredictionforpointcloudclassification),scientificworkflowsfortheautomationofpointcloudclassification,andsoftwareimplementation.Section4discussesfindingsandconclusionsfromtheDeepHydresearchproject.Section5presentsrecommendationsforutilizingtheDeepHydsystemandsuggestionsforfutureresearcheffortsinthisarea.
LITERATUREREVIEW
PointCloudDatafromLiDARandSonar
LiDAR(LightDetectionandRanging),alsoknownaslaserradarsystem,isanopticalremotesensingtechnologydevelopedforrangedetection(Chen2012).Bydeterminingtheheterodynelaserbeamphaseshifts,scanningLiDARcandetectthedistanceinformationfromaplaneofdatapoints,calledpointcloud.Thepointcloudinformation,whichbasicallyconsistsofthephysicalpositionsofanysurfacethatthelaser“sees”,canthenbeusedtodetectusefulcriticalinformationaboutastructureincludingtheelevation(underclearance),surfacedefects(damagequantification)anddeformationunderloading(deflectionmeasurements),etc.Contrasttoconventionalanalysisofphotographicimages,relativelysimplealgorithmscanbeusedtomanipulatethegeometricpointclouddatatoretrievetheafore-mentionedinformation.
Inearly2000
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時(shí)占用土地租賃協(xié)議
- 快件賒銷協(xié)議書
- 2024建設(shè)工程補(bǔ)充合同范本
- 求職意向書樣本-書信范本
- 2024幼兒園保安聘用合同
- 勞務(wù)施工安全協(xié)議書范本2024年
- 浙江省初中名校七年級(jí)上學(xué)期語文期中試卷5套【附答案】
- 吉林省雜糧采購合同
- 4.1 夯實(shí)法治基礎(chǔ) (大單元教學(xué)設(shè)計(jì)) 2024-2025學(xué)年統(tǒng)編版道德與法治九年級(jí)上冊(cè)
- 家庭雇傭保姆合同模板
- 煤礦皮帶智能化集控系統(tǒng)PPT教學(xué)講授課件
- 個(gè)人財(cái)務(wù)管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)--論文
- 分?jǐn)?shù)乘除法整理復(fù)習(xí)(課堂PPT)
- 杭州會(huì)展業(yè)發(fā)展與對(duì)策研究文獻(xiàn)綜述
- 小學(xué)六年級(jí)英語上冊(cè)《Unit 1 How can I get there》教案
- 完整版方法驗(yàn)證報(bào)告模板最終
- 電力管道資料表格(共30頁)
- 大班科學(xué)活動(dòng)教案《豆豆家族》含PPT課件
- 【精品試卷】部編人教版(統(tǒng)編)一年級(jí)上冊(cè)語文第一單元測(cè)試卷含答案
- 金屬有機(jī)化學(xué)ppt課件
- 數(shù)學(xué)說題稿(共4頁)
評(píng)論
0/150
提交評(píng)論