《多邊形的內(nèi)角和與外角和》說課稿_第1頁(yè)
《多邊形的內(nèi)角和與外角和》說課稿_第2頁(yè)
《多邊形的內(nèi)角和與外角和》說課稿_第3頁(yè)
《多邊形的內(nèi)角和與外角和》說課稿_第4頁(yè)
《多邊形的內(nèi)角和與外角和》說課稿_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

《多邊形的內(nèi)角和與外角和》說課稿《多邊形的內(nèi)角和與外角和》說課稿(精選3篇)《多邊形的內(nèi)角和與外角和》說課稿1一,說教材分析從教材的編排上,本節(jié)課作為第八章的第三節(jié)是承上啟下的一節(jié),在內(nèi)容上,從三角形的內(nèi)角和到四邊形的內(nèi)角和到多邊形的內(nèi)角和環(huán)環(huán)相扣,前面的知識(shí)為后邊的知識(shí)做了鋪墊,知識(shí)聯(lián)系性比較強(qiáng),特別是教材中設(shè)計(jì)了一些"想一想""試一試""做一做"等內(nèi)容,體現(xiàn)了課改的精神。在編寫意圖上,編者有意從簡(jiǎn)單的幾何圖形入手,讓學(xué)生經(jīng)歷探索,猜想,歸納等過程,發(fā)展了學(xué)生的合情推理能力。二,說學(xué)生情況學(xué)生上節(jié)課剛剛學(xué)完三角形的內(nèi)角和,對(duì)內(nèi)角和的問題有了一定的認(rèn)識(shí),加上七年級(jí)的學(xué)生具有好奇心,求知欲強(qiáng),互相評(píng)價(jià)互相提問的積極性高。因此對(duì)于學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)條件已經(jīng)成熟,學(xué)生參加探索活動(dòng)的熱情已經(jīng)具備,因此把這節(jié)課設(shè)計(jì)成一節(jié)探索活動(dòng)課是切實(shí)可行的。三,說教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)的確定新的課程標(biāo)準(zhǔn)注重學(xué)生所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重學(xué)生經(jīng)歷觀察,操作,推理,想象等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn),難點(diǎn)【知識(shí)與技能】掌握多邊形內(nèi)角和與外角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想【過程與方法】經(jīng)歷質(zhì)疑,猜想,歸納等活動(dòng),發(fā)展學(xué)生的合情推理能力,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),在探索中學(xué)會(huì)與人合作,學(xué)會(huì)交流自己的思想和方法?!厩楦袘B(tài)度與價(jià)值觀】讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造?!窘虒W(xué)重點(diǎn)】多邊形內(nèi)角和及外角和定理【教學(xué)難點(diǎn)】轉(zhuǎn)化的數(shù)學(xué)思維方法四,說教法和學(xué)法本次課改很大程度上借鑒了美國(guó)教育家杜威的"在做中學(xué)"的理論,突出學(xué)生獨(dú)立數(shù)學(xué)思考活動(dòng),希望通過活動(dòng)使學(xué)生主動(dòng)探索,實(shí)踐,交流,達(dá)到掌握知識(shí)的目的,尤其是本節(jié)課更是一節(jié)難得的探索活動(dòng)課,按新的課程理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"及初一學(xué)生的特點(diǎn),我確定如下教法和學(xué)法。【課堂組織策略】利用學(xué)生的好奇心,設(shè)疑,解疑,組織活潑互動(dòng),有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,積極思考,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。【學(xué)生學(xué)習(xí)策略】明確學(xué)習(xí)目標(biāo),在教師的組織,引導(dǎo),點(diǎn)撥下進(jìn)行主動(dòng)探索,實(shí)踐,交流等活動(dòng)?!据o助策略】利用多媒體課件展示三角形內(nèi)角和向多邊形內(nèi)角和轉(zhuǎn)化,突破這一教學(xué)難點(diǎn),另外利用演示法,歸納法,討論法,分組竟賽法,使不同學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。五,說教學(xué)過程設(shè)計(jì)整個(gè)教學(xué)過程分五步完成。1,創(chuàng)設(shè)情景,引入新課首先解決四邊形內(nèi)角的問題,通過轉(zhuǎn)化為三角形問題來解決。2,合作交流,探索新知。更進(jìn)一步解決五邊形內(nèi)角和,乃至六邊形,七邊形直到N邊形的內(nèi)角和,都能用同樣的方法解決。學(xué)生分組討論。3,歸納總結(jié),建構(gòu)體系。多邊形內(nèi)角和已得出,對(duì)外角和更是水到渠成,這時(shí)要適當(dāng)?shù)目偨Y(jié),讓學(xué)生自己得到零散的知識(shí)體系。4,實(shí)際應(yīng)用,提高能力。"木工師傅可以用邊角余料鋪地板的原因是什么"這既是對(duì)本節(jié)所學(xué)知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用,又是本章第一節(jié)的延伸,同時(shí)也為下節(jié)打下了一個(gè)鋪墊5,分組競(jìng)賽,升華情感四組不同難度的電子試卷,既鞏固本節(jié)課所學(xué)的知識(shí),又使學(xué)生本節(jié)課產(chǎn)生的激情得以釋放。六,說板書設(shè)計(jì)板書本節(jié)課學(xué)生所需掌握的知識(shí)目標(biāo):即多邊形內(nèi)角和與外角和定理七,說創(chuàng)意說明本節(jié)課在知識(shí)上由簡(jiǎn)單到復(fù)雜,學(xué)生經(jīng)歷質(zhì)疑,猜想,驗(yàn)證的同時(shí),在情感上,由好奇到疑惑,由解決單個(gè)問題的一點(diǎn)點(diǎn)快感,到解決整個(gè)問題串的極大興奮,產(chǎn)生了強(qiáng)烈的學(xué)習(xí)激情。這時(shí),一次有效的教學(xué)競(jìng)賽活動(dòng),使學(xué)生的學(xué)習(xí)激情得到釋放,學(xué)科個(gè)性得以張揚(yáng),教師稍加點(diǎn)撥,適可而止,把更多的思考空間留給學(xué)生?!抖噙呅蔚膬?nèi)角和與外角和》說課稿2說教學(xué)目標(biāo)知識(shí)與技能:經(jīng)歷探索多邊形的外角和公式的過程;會(huì)應(yīng)用公式解決問題;過程與方法:培養(yǎng)學(xué)生把未知轉(zhuǎn)化為已知進(jìn)行探究的能力,在探究活動(dòng)中,進(jìn)一步發(fā)展學(xué)生的說理能力與簡(jiǎn)單的推理能力、情感態(tài)度與價(jià)值觀:讓學(xué)生體驗(yàn)猜想得到證實(shí)的成功喜悅和成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿著探索和創(chuàng)造、說教學(xué)重點(diǎn):多邊形外角和定理的探索和應(yīng)用、說教學(xué)難點(diǎn):靈活運(yùn)用公式解決簡(jiǎn)單的實(shí)際問題;轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透、說教學(xué)準(zhǔn)備:多媒體課件說教學(xué)過程第一環(huán)節(jié)創(chuàng)設(shè)情境,引入新課(5分鐘,學(xué)生理解情境,思考問題)問題:(多媒體演示)清晨,小明沿一個(gè)五邊形廣場(chǎng)周圍的小路,按逆時(shí)針方向跑步。(1)小明每從一條街道轉(zhuǎn)到下一條街道時(shí),身體轉(zhuǎn)過的角是哪個(gè)角?(2)他每跑完一圈,身體轉(zhuǎn)過的角度之和是多少?(3)在上圖中,你能求出N1+N2+N3+N4+N5的結(jié)果嗎?你是怎樣得到的?第二環(huán)節(jié)問題解決(10分鐘,小組討論,合作探究)對(duì)于上述的問題,如果學(xué)生能給出一些合理的解釋和解答(例如利用內(nèi)角和),可以按照學(xué)生的思路走下去。然后再給出“小亮的做法”或以“小亮做法”為提示,鼓勵(lì)學(xué)生思考。如果學(xué)生對(duì)于這個(gè)問題無法突破,教師可以給出“小亮的做法”,或引導(dǎo)學(xué)生按“小亮的做法”這樣的思路去思考,以便解決這個(gè)問題。小亮是這樣思考的:如圖所示,過平面內(nèi)一點(diǎn)。分別作與五邊形ABCDE各邊平行的射線OA,,OB’,OC’,OD’,OE’,得到Na,NB,Ny,N5,N。,其中,Na=N1,NB=N2,/Y=N3,Z6=Z4,Ze=Z5.這樣,N1+N2+N3+N4+N5=360°問題引申:1、如果廣場(chǎng)的形狀是六邊形那么還有類似的結(jié)論嗎?2、如果廣場(chǎng)的形狀是八邊形呢?第三環(huán)節(jié)探索多邊形的外角與外角和(10分鐘,全班交流,學(xué)生理解識(shí)記)1、多邊形內(nèi)角的一邊與另一邊的反向延長(zhǎng)線所組成的角叫做這個(gè)多邊形的外角。2、在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,它們的和叫做這個(gè)多邊形的外角和。探究多邊形的外角和,提出一般性的問題:一個(gè)任意的凸n邊形,它的外角和是多少?鼓勵(lì)學(xué)生用多種方法解決這個(gè)問題,可以參考第二環(huán)節(jié)解決特殊問題的方法去解決這個(gè)一般性的問題。方法I:類似探究多邊形的內(nèi)角和的方法,由三角形、四邊形、五邊形…的外角和開始探究;方法H:由n邊形的內(nèi)角和等于(n—2)180°出發(fā),探究問題。結(jié)論:多邊形的外角和等于360°(1)還有什么方法可以推導(dǎo)出多邊形外角和公式?(2)利用多邊形外角和的結(jié)論,能否推導(dǎo)出多邊形內(nèi)角和的結(jié)論?第四環(huán)節(jié)鞏固練習(xí)(10分鐘,學(xué)生利用知識(shí)獨(dú)立解決問題)例1一個(gè)多邊形的內(nèi)角和等于它的外角和的3倍,它是幾邊形?隨堂練習(xí)1、一個(gè)多邊形的外角都等于60°,這個(gè)多邊形是幾邊形?2、右圖是三個(gè)不完全相同的正多邊形拼成的無縫隙、不重疊的圖形的一部分,這種多邊形是幾邊形?為什么?挑戰(zhàn)自我:1、在四邊形的四個(gè)內(nèi)角中,最多能有幾個(gè)鈍角?最多能有幾個(gè)銳角?2、在n邊形的n個(gè)內(nèi)角中,最多能有幾個(gè)鈍角?最多能有幾個(gè)銳角?挑戰(zhàn)自我的2個(gè)問題,對(duì)于新授課上的學(xué)生而言,難度是比較大的。因?yàn)橹安还苁嵌噙呅蔚膬?nèi)角和還是外角和,基本上都是利用等式,從“正向”解決的。而這里要解決的問題,在解決的過程中,需要用到簡(jiǎn)單的不等式知識(shí)和“反證”的思想,對(duì)于初次接觸這些的學(xué)生而言,難度是比較大的。教師要注意講解的方式方法。第五環(huán)節(jié)課時(shí)小結(jié)(3分鐘,學(xué)生加深記憶)多邊形的外角及外角和的定義;多邊形的外角和等于360°;在探求過程中我們使用了觀察、歸納的數(shù)學(xué)方法,并且運(yùn)用了類比、轉(zhuǎn)化等數(shù)學(xué)思想、第六環(huán)節(jié)布置作業(yè):習(xí)題4、11A組(優(yōu)等生)第1,2,3題B組(中等生)1、2C組(后三分之一生)1《多邊形的內(nèi)角和與外角和》說課稿3[說教學(xué)目標(biāo)]知識(shí)與技能:1、會(huì)用多邊形公式進(jìn)行計(jì)算。2、理解多邊形外角和公式。過程與方法:經(jīng)歷探究多邊形內(nèi)角和計(jì)算方法的過程,培養(yǎng)學(xué)生的合作交流意識(shí)力、情感態(tài)度與價(jià)值觀:讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實(shí)際應(yīng)用價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。[說教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵]說教學(xué)重點(diǎn):多邊形的'內(nèi)角和、的應(yīng)用、說教學(xué)難點(diǎn):探索多邊形的內(nèi)角和與外角和公式過程、說教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問題轉(zhuǎn)化為三角形問題來解決、[說教學(xué)方法]本節(jié)課采用“探究與互動(dòng)”的教學(xué)方式,并配以真的情境來引題。[說教學(xué)過程:](一)探索多邊形的內(nèi)角和活動(dòng)1:判斷下列圖形,從多邊形上任取一點(diǎn)c,作對(duì)角線,判斷分成三角形的個(gè)數(shù)?;顒?dòng)2:①?gòu)亩噙呅蔚囊粋€(gè)頂點(diǎn)出發(fā),可以引多少條對(duì)角線?他們將多邊形分成多少個(gè)三角形?②總結(jié)多邊形內(nèi)角和,你會(huì)得到什么樣的結(jié)論?多邊形邊數(shù)分成三角形的個(gè)數(shù)圖形內(nèi)角和計(jì)算規(guī)律三角形3n80°(3—2)?180°四邊形4五邊形5六邊形6七邊形7n邊形n活動(dòng)3:把一個(gè)五邊形分成幾個(gè)三角形,還有其他的分法嗎?總結(jié)多邊形的內(nèi)角和公式一般的,從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引一條對(duì)角線,他們將n邊形分為一個(gè)三角形,n邊形的內(nèi)角和等于180X。鞏固練習(xí):看誰(shuí)求得又快又準(zhǔn)!(搶答)例1:已知四邊形ABCD,NA+NC=180°,求NB+ND二?(點(diǎn)評(píng):四邊形的一組對(duì)角互補(bǔ),另一組對(duì)角也互補(bǔ)。)(二)探索多邊形的外角和活動(dòng)4:例2如圖,在五邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做五邊形的外角和、五邊形的外角和等于多少?分析:(1)任何一個(gè)外角同于他相鄰的內(nèi)角有什系?(2)五邊形的五個(gè)外角加上與他們相鄰的內(nèi)角所得總和是多少?(3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?解:五邊形的外角和= —五邊形的內(nèi)角和活動(dòng)5:探究如果將例2中五邊形換成n邊(nN3),可以得到同樣的結(jié)果嗎?也可以理解為:從多邊形的一個(gè)頂點(diǎn)A點(diǎn)出發(fā),沿多邊形的各邊走過各點(diǎn)之后回到點(diǎn)A、最后再轉(zhuǎn)回出發(fā)時(shí)的方向。由于在這個(gè)運(yùn)動(dòng)過程中身體共轉(zhuǎn)動(dòng)了一周,也就是說所轉(zhuǎn)的各個(gè)角的和等于一個(gè) 角。所以多邊形的外角和等于 。結(jié)論:多邊形的外角和= 。練習(xí)1:如果一個(gè)多邊形的每一個(gè)外角等于30°,則這個(gè)多邊形的邊數(shù)是 。練習(xí)2:正五邊形的每一個(gè)外角等于 ,每一個(gè)內(nèi)角等于練習(xí)3、已知一個(gè)多邊形,它的內(nèi)角和等于外角和,它是幾邊形?(三)小結(jié):本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論