2023-2024學(xué)年江蘇省南京玄武區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第1頁(yè)
2023-2024學(xué)年江蘇省南京玄武區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第2頁(yè)
2023-2024學(xué)年江蘇省南京玄武區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第3頁(yè)
2023-2024學(xué)年江蘇省南京玄武區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第4頁(yè)
2023-2024學(xué)年江蘇省南京玄武區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年江蘇省南京玄武區(qū)重點(diǎn)中學(xué)中考數(shù)學(xué)押題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點(diǎn),以為圓心,為半徑畫弧,交于點(diǎn),則的長(zhǎng)為()A.3 B.4 C. D.52.《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長(zhǎng),量得影長(zhǎng)一丈五尺,立一標(biāo)桿,長(zhǎng)一尺五寸,影長(zhǎng)五寸,問竿長(zhǎng)幾何?意即:有一根竹竿不知道有多長(zhǎng),量出它在太陽(yáng)下的影子長(zhǎng)一丈五尺,同時(shí)立一根一尺五寸的小標(biāo)桿,它的影長(zhǎng)五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長(zhǎng)為()A.五丈 B.四丈五尺 C.一丈 D.五尺3.下列命題中,錯(cuò)誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分4.如圖,直線a∥b,點(diǎn)A在直線b上,∠BAC=100°,∠BAC的兩邊與直線a分別交于B、C兩點(diǎn),若∠2=32°,則∠1的大小為()A.32° B.42° C.46° D.48°5.分別寫有數(shù)字0,﹣1,﹣2,1,3的五張卡片,除數(shù)字不同外其他均相同,從中任抽一張,那么抽到負(fù)數(shù)的概率是()A. B. C. D.6.在0,π,﹣3,0.6,這5個(gè)實(shí)數(shù)中,無(wú)理數(shù)的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7.用圓心角為120°,半徑為6cm的扇形紙片卷成一個(gè)圓錐形無(wú)底紙帽(如圖所示),則這個(gè)紙帽的高是()A.cm B.3cm C.4cm D.4cm8.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤29.下列各類數(shù)中,與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系的是()A.有理數(shù)B.實(shí)數(shù)C.分?jǐn)?shù)D.整數(shù)10.若點(diǎn)A(1,a)和點(diǎn)B(4,b)在直線y=-2x+m上,則a與b的大小關(guān)系是()A.a(chǎn)>b B.a(chǎn)<bC.a(chǎn)=b D.與m的值有關(guān)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,線段AB是⊙O的直徑,弦CD⊥AB,AB=8,∠CAB=22.5°,則CD的長(zhǎng)等于___________________________.12.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.13.如圖,△ABC的面積為6,平行于BC的兩條直線分別交AB,AC于點(diǎn)D,E,F(xiàn),G.若AD=DF=FB,則四邊形DFGE的面積為_____.14.如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長(zhǎng)的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)15.如圖,Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),F(xiàn)為CD上一點(diǎn),且CF=CD,過(guò)點(diǎn)B作BE∥DC交AF的延長(zhǎng)線于點(diǎn)E,BE=12,則AB的長(zhǎng)為_____.16.若x=-1,則x2+2x+1=__________.三、解答題(共8題,共72分)17.(8分)在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進(jìn)而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為;(2)如圖2,當(dāng)α=120°時(shí),參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;(3)PA、PB、PC滿足的等量關(guān)系為.18.(8分)如圖,AD是△ABC的中線,過(guò)點(diǎn)C作直線CF∥AD.(問題)如圖①,過(guò)點(diǎn)D作直線DG∥AB交直線CF于點(diǎn)E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點(diǎn)P,過(guò)點(diǎn)P作直線PG∥AB交直線CF于點(diǎn)E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應(yīng)用)在探究的條件下,設(shè)PE交AC于點(diǎn)M.若點(diǎn)P是AD的中點(diǎn),且△APM的面積為1,直接寫出四邊形ABPE的面積.19.(8分)在一節(jié)數(shù)學(xué)活動(dòng)課上,王老師將本班學(xué)生身高數(shù)據(jù)(精確到1厘米)出示給大家,要求同學(xué)們各自獨(dú)立繪制一幅頻數(shù)分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經(jīng)王老師批改,甲繪制的圖是正確的,乙在數(shù)據(jù)整理與繪圖過(guò)程中均有個(gè)別錯(cuò)誤.寫出乙同學(xué)在數(shù)據(jù)整理或繪圖過(guò)程中的錯(cuò)誤(寫出一個(gè)即可);甲同學(xué)在數(shù)據(jù)整理后若用扇形統(tǒng)計(jì)圖表示,則159.5﹣164.5這一部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為;該班學(xué)生的身高數(shù)據(jù)的中位數(shù)是;假設(shè)身高在169.5﹣174.5范圍的5名同學(xué)中,有2名女同學(xué),班主任老師想在這5名同學(xué)中選出2名同學(xué)作為本班的正、副旗手,那么恰好選中一名男同學(xué)和一名女同學(xué)當(dāng)正,副旗手的概率是多少?20.(8分)如圖,AB是⊙O的直徑,弦DE交AB于點(diǎn)F,⊙O的切線BC與AD的延長(zhǎng)線交于點(diǎn)C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關(guān)系,并說(shuō)明理由;(2)若AD=3,∠C=60°,點(diǎn)E是半圓AB的中點(diǎn),則線段AE的長(zhǎng)為.21.(8分)先化簡(jiǎn),再計(jì)算:其中.22.(10分)均衡化驗(yàn)收以來(lái),樂陵每個(gè)學(xué)校都高樓林立,校園環(huán)境美如畫,軟件、硬件等設(shè)施齊全,小明想要測(cè)量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走6米到達(dá)A處,測(cè)得樹頂端E的仰角為30°,他又繼續(xù)走下臺(tái)階到達(dá)C處,測(cè)得樹的頂端的仰角是60°,再繼續(xù)向前走到大樹底D處,測(cè)得食堂樓頂N的仰角為45°,已如A點(diǎn)離地面的高度AB=4米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.(1)求樹DE的高度;(2)求食堂MN的高度.23.(12分)如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過(guò)三個(gè)景點(diǎn)A、B、C,景區(qū)管委會(huì)又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)D,經(jīng)測(cè)量,景點(diǎn)D位于景點(diǎn)A的北偏東30′方向8km處,位于景點(diǎn)B的正北方向,還位于景點(diǎn)C的北偏西75°方向上,已知AB=5km.景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長(zhǎng).(結(jié)果精確到0.1km).求景點(diǎn)C與景點(diǎn)D之間的距離.(結(jié)果精確到1km).24.“春節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“湯圓”的習(xí)俗.某食品廠為了解市民對(duì)去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).請(qǐng)根據(jù)以上信息回答:(1)本次參加抽樣調(diào)查的居民人數(shù)是人;(2)將圖①②補(bǔ)充完整;(直接補(bǔ)填在圖中)(3)求圖②中表示“A”的圓心角的度數(shù);(4)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D湯圓的人數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

連接DF,在中,利用勾股定理求出CF的長(zhǎng)度,則EF的長(zhǎng)度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點(diǎn)睛】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)同一時(shí)刻物高與影長(zhǎng)成正比可得出結(jié)論.【詳解】設(shè)竹竿的長(zhǎng)度為x尺,∵竹竿的影長(zhǎng)=一丈五尺=15尺,標(biāo)桿長(zhǎng)=一尺五寸=1.5尺,影長(zhǎng)五寸=0.5尺,∴,解得x=45(尺),故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用舉例,熟知同一時(shí)刻物髙與影長(zhǎng)成正比是解答此題的關(guān)鍵.3、C【解析】

根據(jù)三角形的性質(zhì)即可作出判斷.【詳解】解:A、正確,符合三角形三邊關(guān)系;B、正確;三角形外角和定理;C、錯(cuò)誤,等邊三角形既是軸對(duì)稱圖形,不是中心對(duì)稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.【點(diǎn)睛】本題考查了命題真假的判斷,屬于基礎(chǔ)題.根據(jù)定義:符合事實(shí)真理的判斷是真命題,不符合事實(shí)真理的判斷是假命題,不難選出正確項(xiàng).4、D【解析】

根據(jù)平行線的性質(zhì)與對(duì)頂角的性質(zhì)求解即可.【詳解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練的掌握平行線的性質(zhì)與對(duì)頂角的性質(zhì).5、B【解析】試題分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負(fù)數(shù)的概率是.故選B.考點(diǎn):概率.6、B【解析】

分別根據(jù)無(wú)理數(shù)、有理數(shù)的定義逐一判斷即可得.【詳解】解:在0,π,-3,0.6,這5個(gè)實(shí)數(shù)中,無(wú)理數(shù)有π、這2個(gè),故選B.【點(diǎn)睛】此題主要考查了無(wú)理數(shù)的定義,注意帶根號(hào)的要開不盡方才是無(wú)理數(shù),無(wú)限不循環(huán)小數(shù)為無(wú)理數(shù).如π,,0.8080080008…(每?jī)蓚€(gè)8之間依次多1個(gè)0)等形式.7、C【解析】

利用扇形的弧長(zhǎng)公式可得扇形的弧長(zhǎng);讓扇形的弧長(zhǎng)除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個(gè)圓錐形筒的高為(cm).故選C.【點(diǎn)睛】此題考查了圓錐的計(jì)算,用到的知識(shí)點(diǎn)為:圓錐側(cè)面展開圖的弧長(zhǎng)=;圓錐的底面周長(zhǎng)等于側(cè)面展開圖的弧長(zhǎng);圓錐的底面半徑,母線長(zhǎng),高組成以母線長(zhǎng)為斜邊的直角三角形.8、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過(guò)第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0.當(dāng)Δ≤0時(shí),[-2(b-2)]2-4(b2-1)≤0,解得b≥.當(dāng)拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0時(shí),設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無(wú)解,∴此種情況不存在.∴b≥.9、B【解析】

根據(jù)實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系解答.【詳解】實(shí)數(shù)與數(shù)軸上的點(diǎn)存在一一對(duì)應(yīng)關(guān)系,故選:B.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸上點(diǎn)的關(guān)系,每一個(gè)實(shí)數(shù)都可以用數(shù)軸上唯一的點(diǎn)來(lái)表示,反過(guò)來(lái),數(shù)軸上的每個(gè)點(diǎn)都表示一個(gè)唯一的實(shí)數(shù),也就是說(shuō)實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng).10、A【解析】【分析】根據(jù)一次函數(shù)性質(zhì):中,當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.由-2<0得,當(dāng)x12時(shí),y1>y2.【詳解】因?yàn)?,點(diǎn)A(1,a)和點(diǎn)B(4,b)在直線y=-2x+m上,-2<0,所以,y隨x的增大而減小.因?yàn)椋?<4,所以,a>b.故選A【點(diǎn)睛】本題考核知識(shí)點(diǎn):一次函數(shù)性質(zhì).解題關(guān)鍵點(diǎn):判斷一次函數(shù)中y與x的大小關(guān)系,關(guān)鍵看k的符號(hào).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、4【解析】

連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點(diǎn),即CE=DE,由OA=OC,利用等邊對(duì)等角得到一對(duì)角相等,確定出三角形COE為等腰直角三角形,求出CE的長(zhǎng),進(jìn)而得出CD.【詳解】連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴OC=AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴CE=OC=,∴CD=2CE=,故答案為.【點(diǎn)睛】考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.12、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.13、1.【解析】

先根據(jù)題意可證得△ABC∽△ADE,△ABC∽△AFG,再根據(jù)△ABC的面積為6分別求出△ADE與△AFG的面積,則四邊形DFGE的面積=S△AFG-S△ADE.【詳解】解:∵DE∥BC,,

∴△ADE∽△ABC,∵AD=DF=FB,

∴=()1,即=()1,∴S△ADE=;∵FG∥BC,∴△AFG∽△ABC,

=()1,即=()1,∴S△AFG=;∴S四邊形DFGE=S△AFG-S△ADE=-=1.故答案為:1.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)與應(yīng)用,解題的關(guān)鍵是熟練的掌握相似三角形的性質(zhì)與應(yīng)用.14、①②④【解析】

①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對(duì)等弧得到,可以判斷①;

②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過(guò)證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯(cuò)誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設(shè)BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點(diǎn)睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對(duì)等弧,等腰直角三角形的判定,勾股定理,面積的計(jì)算,綜合性較強(qiáng).15、1.【解析】

根據(jù)三角形的性質(zhì)求解即可?!驹斀狻拷猓涸赗t△ABC中,D為AB的中點(diǎn),根據(jù)直角三角形斜邊的中線等于斜邊的一半可得:AD=BD=CD,因?yàn)镈為AB的中點(diǎn),BE//DC,所以DF是△ABE的中位線,BE=2DF=12所以DF==6,設(shè)CD=x,由CF=CD,則DF==6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1..【點(diǎn)睛】本題主要考查三角形基本概念,綜合運(yùn)用三角形的知識(shí)可得答案。16、2【解析】

先利用完全平方公式對(duì)所求式子進(jìn)行變形,然后代入x的值進(jìn)行計(jì)算即可.【詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【點(diǎn)睛】本題考查了代數(shù)式求值,涉及了因式分解,二次根式的性質(zhì)等,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)150,(1)證明見解析(3)【解析】

(1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉(zhuǎn)變換的性質(zhì)、勾股定理和余弦、正弦的關(guān)系計(jì)算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過(guò)點(diǎn)A作AD⊥于D點(diǎn).∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應(yīng)用,掌握等邊三角形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、靈活運(yùn)用類比思想是解題的關(guān)鍵.18、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應(yīng)用】:8.【解析】

(1)先根據(jù)平行線的性質(zhì)和等量代換得出∠1=∠3,再利用中線性質(zhì)得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過(guò)點(diǎn)D作DN∥PE交直線CF于點(diǎn)N,由平行線性質(zhì)得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長(zhǎng)BP交直線CF于點(diǎn)N,根據(jù)平行線的性質(zhì)結(jié)合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長(zhǎng)BP交CF于H,根據(jù)平行四邊形的性質(zhì)結(jié)合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過(guò)點(diǎn)D作交直線于點(diǎn),∴四邊形是平行四邊形,∵由問題結(jié)論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長(zhǎng)BP交直線CF于點(diǎn)N,∵是的中線,∴四邊形是平行四邊形.【應(yīng)用】如圖④,延長(zhǎng)BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)平行線性質(zhì),平行四邊形性質(zhì)的綜合應(yīng)用能力,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.19、(1)乙在整理數(shù)據(jù)時(shí)漏了一個(gè)數(shù)據(jù),它在169.5﹣﹣174.5內(nèi);(答案不唯一);(2)120°;(3)160或1;(4).【解析】

(1)對(duì)比圖①與圖②,找出圖②中與圖①不相同的地方;(2)則159.5﹣164.5這一部分的人數(shù)占全班人數(shù)的比乘以360°;(3)身高排序?yàn)榈?0和第31的兩名同學(xué)的身高的平均數(shù);(4)用樹狀圖法求概率.【詳解】解:(1)對(duì)比甲乙的直方圖可得:乙在整理數(shù)據(jù)時(shí)漏了一個(gè)數(shù)據(jù),它在169.5﹣﹣174.5內(nèi);(答案不唯一)(2)根據(jù)頻數(shù)分布直方圖中每一組內(nèi)的頻數(shù)總和等于總數(shù)據(jù)個(gè)數(shù);將甲的數(shù)據(jù)相加可得10+15+20+10+5=60;由題意可知159.5﹣164.5這一部分所對(duì)應(yīng)的人數(shù)為20人,所以這一部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為20÷60×360=120°,故答案為120°;(3)根據(jù)中位數(shù)的求法,將甲的數(shù)據(jù)從小到大依次排列,可得第30與31名的數(shù)據(jù)在第3組,由乙的數(shù)據(jù)知小于162的數(shù)據(jù)有36個(gè),則這兩個(gè)只能是160或1.故答案為160或1;(4)列樹狀圖得:P(一男一女)==.20、(1)∠AED=∠C,理由見解析;(2)【解析】

(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進(jìn)行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點(diǎn),∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點(diǎn)睛】此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用,注意掌握輔助線的作法.21、;【解析】

根據(jù)分式的化簡(jiǎn)求值,先把分子分母因式分解,再算乘除,通分后計(jì)算減法,約分化簡(jiǎn),最后代入求值即可.【詳解】解:====當(dāng)時(shí),原式=.【點(diǎn)睛】此題主要考查了分式的化簡(jiǎn)求值,把分式的除法化為乘法,然后約分是解題關(guān)鍵.22、(1)12米;(2)(2+8)米【解析】

(1)設(shè)DE=x,先證明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根據(jù)EF=8求出x的值得到答案;(2)延長(zhǎng)NM交DB延長(zhǎng)線于點(diǎn)P,先分別求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.【詳解】(1)如圖,設(shè)DE=x,∵AB=DF=4,∠ACB=30°,∴AC=8,∵∠ECD=60°,∴△ACE是直角三角形,∵AF∥BD,∴∠CAF=30°,∴∠CAE=60°,∠AEC=30°,∴AE=16,∴Rt△AEF中,EF=8,即x﹣4=8,解得x=12,∴樹DE的高度為12米;(2)延長(zhǎng)NM交DB延長(zhǎng)線于點(diǎn)P,則AM=BP=6,由(1)知CD=CE=×AC=4,BC=4,∴PD=BP+BC+CD=6+4+4=6+8,∵∠NDP=45°,且∠NPD=90°,∴NP=PD=6+8,∴NM=NP﹣MP=6+8﹣4=2+8,∴食堂MN的高度為(2+8)米.【點(diǎn)睛】此題是解直角三角形的實(shí)際應(yīng)用,考查直角三角形的性質(zhì),30°角所對(duì)的直角邊等于斜邊的一半,銳

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論