版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
包頭市重點中學2023-2024學年高三下第一次測試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.2.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.3.設m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,4.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位5.設a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件6.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.7.已知,滿足約束條件,則的最大值為A. B. C. D.8.已知是虛數(shù)單位,若,則()A. B.2 C. D.39.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.10.已知復數(shù)z滿足(其中i為虛數(shù)單位),則復數(shù)z的虛部是()A. B.1 C. D.i11.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.412.設全集,集合,.則集合等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知a,b均為正數(shù),且,的最小值為________.14.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.15.已知橢圓的下頂點為,若直線與橢圓交于不同的兩點、,則當_____時,外心的橫坐標最大.16.過動點作圓:的切線,其中為切點,若(為坐標原點),則的最小值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調性;(2)若,設,證明:,,使.18.(12分)已知數(shù)列的各項都為正數(shù),,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數(shù),如,,求數(shù)列的前2020項和.19.(12分)下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產品銷量(萬臺)的具體數(shù)據(jù):月份56789101112研發(fā)費用(百萬元)2361021131518產品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關關系,求出與的線性回歸方程(系數(shù)精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中是2018年5-12月產品銷售平均數(shù)的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數(shù)大約多少元.參考數(shù)據(jù):,,,,參考公式:相關系數(shù),其回歸直線中的,若隨機變量服從正態(tài)分布,則,.20.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點的個數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點從小到大分別為,,證明:21.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。22.(10分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標準方程;(2)經過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當且僅當,時,三棱錐外接球的表面積取得最小值為.故選B.【點睛】(1)解決關于外接球的問題的關鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.2、C【解析】
由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎題.3、B【解析】
根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當,,時,由于不在平面內,故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當,時,可能含于平面,故無法得出.對于D選項,當,時,無法得出.綜上所述,的一個充分條件是“,”故選:B【點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎題.4、D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個長度單位得到,故選D5、C【解析】
根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對數(shù)不等式的解法,是基礎題.6、A【解析】
根據(jù)是中點這一條件,將棱錐的高轉化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.7、D【解析】
作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合即可得到結論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.8、A【解析】
直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎題.9、B【解析】
根據(jù)程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.10、A【解析】
由虛數(shù)單位i的運算性質可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質、復數(shù)的概念,屬于基礎題.11、C【解析】
由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.12、A【解析】
先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.14、x﹣y=0.【解析】
先將x=1代入函數(shù)式求出切點縱坐標,然后對函數(shù)求導數(shù),進一步求出切線斜率,最后利用點斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點睛】本題考查利用導數(shù)求切線方程的基本方法,利用切點滿足的條件列方程(組)是關鍵.同時也考查了學生的運算能力,屬于基礎題.15、【解析】
由已知可得、的坐標,求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標,再由導數(shù)求最值.【詳解】如圖,由已知條件可知,不妨設,則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點坐標為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當時,,當時,.當時,函數(shù)取極大值,亦為最大值.故答案為:.【點睛】本題考查直線與橢圓位置關系的應用,訓練了利用導數(shù)求最值,是中等題.16、【解析】解答:由圓的方程可得圓心C的坐標為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點到原點距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點到直線的距離公式得:MN的最小值為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉化為,利用導數(shù)找到與即可證明.【詳解】(1).①當時,恒成立,當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù).②當時,,.當時,;當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當時,,則在上是減函數(shù).④當時,,當時,;當時,;當時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當,時,,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性以及證明不等式的問題,考查學生邏輯推理能力,是一道較難的題.18、(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)遞推公式變形為,由數(shù)列是正項數(shù)列,得到,根據(jù)數(shù)列是等比數(shù)列求通項公式;(Ⅱ),根據(jù)新定義和對數(shù)的運算分類討論數(shù)列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數(shù)列的各項都為正數(shù),∴,即.∴數(shù)列是以2為首項,2為公比的等比數(shù)列,∴.(Ⅱ)∵,∴,.∴數(shù)列的前2020項的和為.【點睛】本題考查根據(jù)數(shù)列的遞推公式求通項公式和數(shù)列的前項和,意在考查轉化與化歸的思想,計算能力,屬于中檔題型.19、(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由題意計算x、y的平均值,進而由公式求出回歸系數(shù)b和a,即可寫出回歸直線方程;(Ⅱ)由題意計算平均數(shù)μ,得出z~N(μ,),求出日銷量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,計算獎金總數(shù)是多少.【詳解】(Ⅰ)因為,,因為,所以,所以;(Ⅱ)因為,所以,故即,日銷量的概率為,日銷量的概率為,日銷量的概率為,所以獎金總數(shù)大約為:(元).【點睛】本題考查利用最小二乘法求回歸直線方程,還考查了利用正態(tài)分布計算概率,進而估計總體情況,屬于中檔題.20、(Ⅰ)函數(shù)在區(qū)間上有兩個零點.見解析(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)題意,,利用導函數(shù)研究函數(shù)的單調性,分類討論在區(qū)間的單調區(qū)間和極值,進而研究零點個數(shù)問題;(Ⅱ)求導,,由于在區(qū)間上的極值點從小到大分別為,,求出,利用導數(shù)結合單調性和極值點,即可證明出.【詳解】解:(Ⅰ),,當時,,,在區(qū)間上單調遞減,,在區(qū)間上無零點;當時,,在區(qū)間上單調遞增,,在區(qū)間上唯一零點;當時,,,在區(qū)間上單調遞減,,;在區(qū)間上唯一零點;綜上可知,函數(shù)在區(qū)間上有兩個零點.(Ⅱ),,由(Ⅰ)知在無極值點;在有極小值點,即為;在有極大值點,即為,由,即,,2…,,,,,,以及的單調性,,,,,由函數(shù)在單調遞增,得,,由在單調遞減,得,即,故.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性和極值,通過導數(shù)解決函數(shù)零點個數(shù)問題和證明不等式,考查轉化思想和計算能力.21、(1);(2)存在定點,見解析【解析】
(1)設動點,則,利用,求出曲線的方程.(2)由已知直線過點,設的方程為,則聯(lián)立方程組,消去得,設,,,利用韋達定理求解直線的斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生態(tài)旅游場承包經營合作協(xié)議范本4篇
- 2025年度大棚農業(yè)保險合作協(xié)議3篇
- 二手房交易標準協(xié)議樣本(2024個人版)版
- 2025年度叉車租賃與租賃物租賃期限調整合同4篇
- 2025年昌月離婚協(xié)議書婚姻解除及財產清算范本4篇
- 2025年度航空航天材料質量保證協(xié)議4篇
- 2024年重慶地區(qū)標準離婚合同模板一
- 2024私募股權投資居間協(xié)議
- 專項舞臺效果策劃與實施協(xié)議版A版
- 2024年食堂運營合作協(xié)議標準文本版
- 2024解析:第三章物態(tài)變化-講核心(原卷版)
- DB32T 1590-2010 鋼管塑料大棚(單體)通 用技術要求
- 安全行車知識培訓
- 2024年安徽省高校分類對口招生考試數(shù)學試卷真題
- 第12講 語態(tài)一般現(xiàn)在時、一般過去時、一般將來時(原卷版)
- 2024年采購員年終總結
- 2024年新疆區(qū)公務員錄用考試《行測》試題及答案解析
- 肺動脈高壓的護理查房課件
- 2025屆北京巿通州區(qū)英語高三上期末綜合測試試題含解析
- 公婆贈予兒媳婦的房產協(xié)議書(2篇)
- 煤炭行業(yè)智能化煤炭篩分與洗選方案
評論
0/150
提交評論