云南省彌勒市2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
云南省彌勒市2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
云南省彌勒市2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
云南省彌勒市2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
云南省彌勒市2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省彌勒市2024屆高考數(shù)學(xué)全真模擬密押卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題2.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點(diǎn),若,則λ+μ的值為()A. B. C. D.3.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件4.如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.5.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計(jì)理科數(shù)學(xué)成績不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.1007.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.8.已知是等差數(shù)列的前項(xiàng)和,,,則()A.85 B. C.35 D.9.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.1910.設(shè)過拋物線上任意一點(diǎn)(異于原點(diǎn))的直線與拋物線交于兩點(diǎn),直線與拋物線的另一個交點(diǎn)為,則()A. B. C. D.11.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.12.在正方體中,點(diǎn),,分別為棱,,的中點(diǎn),給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.下表是關(guān)于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個人做進(jìn)一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.14.已知全集,集合則_____.15.展開式中的系數(shù)為________.16.已知復(fù)數(shù)z是純虛數(shù),則實(shí)數(shù)a=_____,|z|=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在上是減函數(shù),求實(shí)數(shù)的最大值;(2)若,求證:.18.(12分)已知圓M:及定點(diǎn),點(diǎn)A是圓M上的動點(diǎn),點(diǎn)B在上,點(diǎn)G在上,且滿足,,點(diǎn)G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動直線l與曲線C有且只有一個公共點(diǎn),與直線和分別交于P、Q兩點(diǎn).當(dāng)時,求(O為坐標(biāo)原點(diǎn))面積的取值范圍.19.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.20.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時,求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.21.(12分)已知橢圓,點(diǎn),點(diǎn)滿足(其中為坐標(biāo)原點(diǎn)),點(diǎn)在橢圓上.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為,若不經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn).且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.22.(10分)已知函數(shù).(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當(dāng)時,若方程有兩個不相等的實(shí)數(shù)根,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點(diǎn)睛】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.2、B【解析】

建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點(diǎn)睛】本題主要考查了由平面向量線性運(yùn)算的結(jié)果求參數(shù),屬于中檔題.3、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)?,所以,因?yàn)?,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)?,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對應(yīng)此類問題的解題步驟,以及三角形形狀對應(yīng)的特征.4、C【解析】

根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點(diǎn)睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).5、D【解析】

設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因?yàn)?,所以,所以,解得:,所以?fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,此點(diǎn)位于第四象限.故選D【點(diǎn)睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點(diǎn)知識,考查了方程思想,屬于基礎(chǔ)題.6、D【解析】

由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績不低于110分的人數(shù)為人,故選:.【點(diǎn)睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.7、A【解析】

根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.8、B【解析】

將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.9、B【解析】

計(jì)算,故,解得答案.【詳解】當(dāng)時,,即,且.故,,故.故選:.【點(diǎn)睛】本題考查了數(shù)列的相關(guān)計(jì)算,意在考查學(xué)生的計(jì)算能力和對于數(shù)列公式方法的綜合應(yīng)用.10、C【解析】

畫出圖形,將三角形面積比轉(zhuǎn)為線段長度比,進(jìn)而轉(zhuǎn)為坐標(biāo)的表達(dá)式。寫出直線方程,再聯(lián)立方程組,求得交點(diǎn)坐標(biāo),最后代入坐標(biāo),求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點(diǎn)睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長的比例關(guān)系,進(jìn)而聯(lián)立方程組求解,是一道不錯的綜合題.11、C【解析】

設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.12、C【解析】

建立空間直角坐標(biāo)系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實(shí)數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點(diǎn)睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運(yùn)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、32【解析】

由已知可得抽取的比例,計(jì)算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點(diǎn)睛】本題考查分層抽樣中求樣本容量,屬于基礎(chǔ)題.14、【解析】

根據(jù)補(bǔ)集的定義求解即可.【詳解】解:.故答案為.【點(diǎn)睛】本題主要考查了補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.15、30【解析】

先將問題轉(zhuǎn)化為二項(xiàng)式的系數(shù)問題,利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的第項(xiàng),令的指數(shù)分別等于2,4,求出特定項(xiàng)的系數(shù).【詳解】由題可得:展開式中的系數(shù)等于二項(xiàng)式展開式中的指數(shù)為2和4時的系數(shù)之和,由于二項(xiàng)式的通項(xiàng)公式為,令,得展開式的的系數(shù)為,令,得展開式的的系數(shù)為,所以展開式中的系數(shù),故答案為30.【點(diǎn)睛】本題考查利用二項(xiàng)式展開式的通項(xiàng)公式解決二項(xiàng)展開式的特定項(xiàng)的問題,考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.16、11【解析】

根據(jù)復(fù)數(shù)運(yùn)算法則計(jì)算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計(jì)算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點(diǎn)睛】此題考查復(fù)數(shù)的概念和模長計(jì)算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計(jì)算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運(yùn)算法則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1),在上,因?yàn)槭菧p函數(shù),所以恒成立,即恒成立,只需.令,,則,因?yàn)椋?所以在上是增函數(shù),所以,所以,解得.所以實(shí)數(shù)的最大值為.(2),.令,則,根據(jù)題意知,所以在上是增函數(shù).又因?yàn)椋?dāng)從正方向趨近于0時,趨近于,趨近于1,所以,所以存在,使,即,,所以對任意,,即,所以在上是減函數(shù);對任意,,即,所以在上是增函數(shù),所以當(dāng)時,取得最小值,最小值為.由于,,則,當(dāng)且僅當(dāng),即時取等號,所以當(dāng)時,.18、(1);(2).【解析】

(1)根據(jù)題意得到GB是線段的中垂線,從而為定值,根據(jù)橢圓定義可知點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處的面積代入韋達(dá)定理化簡即可求范圍.【詳解】(1)為的中點(diǎn),且是線段的中垂線,,又,∴點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,設(shè)橢圓方程為(),則,,,所以曲線C的方程為.(2)設(shè)直線l:(),由消去y,可得.因?yàn)橹本€l總與橢圓C有且只有一個公共點(diǎn),所以,.①又由可得;同理可得.由原點(diǎn)O到直線的距離為和,可得.②將①代入②得,當(dāng)時,,綜上,面積的取值范圍是.【點(diǎn)睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關(guān)系從而判斷軌跡,直線與曲線相交一般聯(lián)立設(shè)而不求韋達(dá)定理進(jìn)行求解即可,屬于一般性題目.19、(1)見解析;(2).【解析】

(1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點(diǎn)為,連接、,因?yàn)椋?又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因?yàn)?,所以,,,平面,又平面,平面平面;?)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點(diǎn)即為球心,記的中點(diǎn)為點(diǎn),則.由與相似可得,所以.所以三棱錐外接球的體積為.【點(diǎn)睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計(jì)算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.20、(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】

(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時,的最大值為.【點(diǎn)睛】本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.21、(1)(2)是,【解析】

(1)設(shè),根據(jù)條件可求出的坐標(biāo),再利用在橢圓上,代入橢圓方程求出即可;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論