版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆三湘教育聯(lián)盟高三第二次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.2.若的展開式中的系數(shù)為-45,則實(shí)數(shù)的值為()A. B.2 C. D.3.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.24.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.5.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.36.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.7.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.8.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.159.函數(shù)的大致圖象為()A. B.C. D.10.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)11.將一張邊長(zhǎng)為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.12.已知集合,集合,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最大值為________.14.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.15.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.16.已知雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,則雙曲線的焦距為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,、、的對(duì)應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長(zhǎng).18.(12分)分別為的內(nèi)角的對(duì)邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時(shí),求的周長(zhǎng).19.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:.過點(diǎn)的直線:(為參數(shù))與曲線相交于,兩點(diǎn).(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求實(shí)數(shù)的值.20.(12分)某商場(chǎng)以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計(jì),顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場(chǎng)銷售一件該商品,若顧客選擇分2期付款,則商場(chǎng)獲得利潤(rùn)l00元,若顧客選擇分3期付款,則商場(chǎng)獲得利潤(rùn)150元,若顧客選擇分4期付款,則商場(chǎng)獲得利潤(rùn)200元.商場(chǎng)銷售兩件該商品所獲的利潤(rùn)記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學(xué)期望的最大值.21.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.22.(10分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點(diǎn).求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.2、D【解析】
將多項(xiàng)式的乘法式展開,結(jié)合二項(xiàng)式定理展開式通項(xiàng),即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式通項(xiàng)的簡(jiǎn)單應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.3、C【解析】
利用等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.4、A【解析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則,所以.故選:A【點(diǎn)睛】本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.5、D【解析】
畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時(shí),邊界線的虛實(shí)問題.6、C【解析】
先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時(shí),由,得,解得,此時(shí);②當(dāng)時(shí),由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時(shí),,則,此時(shí);當(dāng)時(shí),,此時(shí).綜上所述,函數(shù)的值域?yàn)?,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時(shí)也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.7、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.8、B【解析】,∴,選B.9、A【解析】
利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.10、C【解析】
由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.11、B【解析】設(shè)折成的四棱錐的底面邊長(zhǎng)為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.12、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點(diǎn)睛】該題考查的是有關(guān)集合的運(yùn)算的問題,涉及到的知識(shí)點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,畫出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當(dāng),時(shí),的最大值為.故答案為:9.【點(diǎn)睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.14、【解析】
由于,則.15、18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對(duì)稱,結(jié)合函數(shù)的對(duì)稱性進(jìn)行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對(duì)稱,,函數(shù)關(guān)于點(diǎn)對(duì)稱,所以兩個(gè)函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對(duì)稱,與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對(duì)稱,.故答案為:18【點(diǎn)睛】本題考查了函數(shù)對(duì)稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對(duì)稱性是解決本題的關(guān)鍵,屬于中檔題.16、1【解析】
由雙曲線的漸近線,以及求得的值即可得答案.【詳解】由于雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為,所以,即①,把代入,得,即②又③聯(lián)立①②③,得.所以.故答案是:1.【點(diǎn)睛】本題考查雙曲線的性質(zhì),注意題目“雙曲線的漸近線與準(zhǔn)線的一個(gè)交點(diǎn)坐標(biāo)為”這一條件的運(yùn)用,另外注意題目中要求的焦距即,容易只計(jì)算到,就得到結(jié)論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的運(yùn)用.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的綜合運(yùn)用.18、(1)(2)【解析】
(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時(shí),最大,結(jié)合(1)中條件,即可求出最大時(shí),對(duì)應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長(zhǎng).【詳解】(1)由,得,即.因?yàn)?,所?由,得.(2)因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.因?yàn)榈拿娣e.所以當(dāng)時(shí),的面積取得最大值,此時(shí),則,所以的周長(zhǎng)為.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力.19、(1),;(2).【解析】
(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,再根據(jù),即,利用韋達(dá)定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,∴曲線的直角坐標(biāo)方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,由得,所以,即,所以,而,解得.【點(diǎn)睛】本題主要考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程的轉(zhuǎn)化和直線參數(shù)方程的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.20、(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ?shù)學(xué)期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨(dú)立重復(fù)事件的特點(diǎn)得出,利用二項(xiàng)分布的概率公式,即可求出結(jié)果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學(xué)期望,結(jié)合,即可算出的最大值.【詳解】解:(Ⅰ)設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當(dāng)時(shí),的最大值為280,所以的數(shù)學(xué)期望的最大值為280.【點(diǎn)睛】本題考查獨(dú)立重復(fù)事件和二項(xiàng)分布的應(yīng)用,以及離散型分布列和數(shù)學(xué)期望,考查計(jì)算能力.21、(1)見解析(2)【解析】
(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點(diǎn),∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標(biāo)系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新《體育法》知識(shí)考試題庫200題(含答案)
- 2025年云南省職教高考《職測(cè)》必刷考試練習(xí)題庫(含答案)
- 《密碼法》知識(shí)競(jìng)賽考試題庫150題(含答案)
- 《保教知識(shí)與能力》(幼兒園)歷年教師資格考試真題題庫(含答案解析)
- 2025年江西洪州職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試近5年??及鎱⒖碱}庫含答案解析
- 高清視頻會(huì)議系統(tǒng)集成合同
- 仔豬購銷合同協(xié)議書范本年
- 混凝土購銷合同協(xié)議書
- 承包經(jīng)營合同合同
- 承租人租房簡(jiǎn)單合同范本
- 大動(dòng)脈炎患者的血清代謝組學(xué)及口腔微生物群特征的初步研究
- 小學(xué)科學(xué)項(xiàng)目化學(xué)習(xí)活動(dòng)作業(yè)方案案例設(shè)計(jì)《設(shè)計(jì)制作動(dòng)力小車項(xiàng)目化學(xué)習(xí)》
- 茶與健康 第二講 茶成分課件
- 復(fù)工條件驗(yàn)收?qǐng)?bào)告
- 小學(xué)生作文稿紙A4打印稿
- 2023理論學(xué)習(xí)、理論武裝方面存在問題及原因剖析18條
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第三章運(yùn)動(dòng)能力與個(gè)體差異
- (部編)五年級(jí)語文下冊(cè)小練筆(21篇)
- 《企業(yè)人力資源管理師考試用書考試通過必備一級(jí)》
- 2023年高考英語考前必練-非謂語動(dòng)詞(含近三年真題及解析)
- 高??萍汲晒D(zhuǎn)化政策與案例分享
評(píng)論
0/150
提交評(píng)論