




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市七校重點中學2023-2024學年高考沖刺數學模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.2.已知等比數列的前項和為,且滿足,則的值是()A. B. C. D.3.偶函數關于點對稱,當時,,求()A. B. C. D.4.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.5.已知集合,,則A. B.C. D.6.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.67.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.8.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.39.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.10.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.11.已知,,則等于().A. B. C. D.12.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.二、填空題:本題共4小題,每小題5分,共20分。13.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.14.已知函數,則曲線在點處的切線方程是_______.15.在如圖所示的三角形數陣中,用表示第行第個數,已知,且當時,每行中的其他各數均等于其“肩膀”上的兩個數之和,即,若,則正整數的最小值為______.16.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.18.(12分)已知函數.(1)若對任意x0,f(x)0恒成立,求實數a的取值范圍;(2)若函數f(x)有兩個不同的零點x1,x2(x1x2),證明:.19.(12分)在直角坐標系中,曲線的參數方程為(為參數,),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.20.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.21.(12分)已知函數.(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.22.(10分)已知是各項都為正數的數列,其前項和為,且為與的等差中項.(1)求證:數列為等差數列;(2)設,求的前100項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.2、C【解析】
利用先求出,然后計算出結果.【詳解】根據題意,當時,,,故當時,,數列是等比數列,則,故,解得,故選.【點睛】本題主要考查了等比數列前項和的表達形式,只要求出數列中的項即可得到結果,較為基礎.3、D【解析】
推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.【點睛】本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.4、C【解析】
根據表示圓和直線與圓有公共點,得到,再利用二次函數的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數的性質,還考查了運算求解的能力,屬于中檔題.5、D【解析】
因為,,所以,,故選D.6、B【解析】
根據正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.7、C【解析】
根據三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.8、D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.9、D【解析】
由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.10、D【解析】
根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.11、B【解析】
由已知條件利用誘導公式得,再利用三角函數的平方關系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結合解得,所以,故選B.【點睛】本題考查三角函數的誘導公式、同角三角函數的平方關系以及三角函數的符號與位置關系,屬于基礎題.12、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據圓的性質可知在線段的垂直平分線上,由此得到,同理可得,由對數運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關鍵是能夠利用圓的性質和對數運算法則構造出滿足的方程,由此得到結果.14、【解析】
求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題15、2022【解析】
根據條件先求出數列的通項,利用累加法進行求解即可.【詳解】,,,下面求數列的通項,由題意知,,,,,,數列是遞增數列,且,的最小值為.故答案為:.【點睛】本題主要考查歸納推理的應用,結合數列的性質求出數列的通項是解決本題的關鍵.綜合性較強,屬于難題.16、【解析】
根據向量共線定理得A,B,C三點共線,再根據點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)在直線的參數方程中消去參數可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結合可將曲線的極坐標方程化為直角坐標方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數方程、極坐標方程與普通方程之間的轉化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.18、(1);(2)證明見解析.【解析】
(1)求出,判斷函數的單調性,求出函數的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構造函數,利用放縮法和基本不等式證明結論.【詳解】(1)由,得.令.當時,;當時,;在上單調遞增,在上單調遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調遞增,在上單調遞減,.若,則,令在上單調遞增,,.又,在上單調遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點睛】本題考查利用導數解決不等式恒成立問題,利用導數證明不等式,屬于難題.19、(1),以為圓心,為半徑的圓;(2)【解析】
(1)根據極坐標與直角坐標的互化公式,直接得到的直角坐標方程并判斷形狀;(2)聯(lián)立直線參數方程與的直角坐標方程,根據直線參數方程中的幾何意義結合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設點,所對應的參數分別為,,則,.,解得,則.【點睛】本題考查極坐標與直角坐標的互化以及根據直線參數方程中的幾何意義求值,難度一般.(1)極坐標與直角坐標的互化公式:;(2)若要使用直線參數方程中的幾何意義,要注意將直線的標準參數方程代入到對應曲線的直角坐標方程中,構成關于的一元二次方程并結合韋達定理形式進行分析求解.20、(1)見解析(2)【解析】
(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1);(2).【解析】
(1)分類討論,,,即可得出結果;(2)先由題意,將問題轉化為即可,再求出,的最小值,解不等式即可得出結果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當時,,所以;因為,所以,解得,結合,所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數的問題,熟記分類討論的思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)用線纜購買合同范本
- 關于施工安全合同范本
- 承辦論壇合同范本
- 主播和合同范本
- 光伏ppp模式合同范本
- 助理聘用合同范本
- 醫(yī)院電力安裝合同范本
- 勞資補償合同范本
- 住宅大樓租房合同范本
- 醫(yī)院簡短采購合同范例
- 市場消防安全課件
- 名師工作室建設課件
- 腹膜透析管理標準操作規(guī)程
- 2025-2025學年度人教版小學五年級美術下冊教學計劃
- 新人教版四年級數學下冊全冊教案 完整
- 2025年行政執(zhí)法人員執(zhí)法資格考試必考題庫及答案(共232題)
- 浙教版小學三年級下冊《勞動》全冊教學課件
- 午休安全紀律教育
- 《電力建設工程施工安全管理導則》(NB∕T 10096-2018)
- 2024-2025學年廣東省部分學校高一(上)第一次聯(lián)合考試物理試卷(含答案)
- 法律盡職調查
評論
0/150
提交評論