![一種基于CKF的改進LANDMARC室內(nèi)定位算法_第1頁](http://file4.renrendoc.com/view3/M03/32/0C/wKhkFmYyf7-AANVrAAMAo6wOKPE568.jpg)
![一種基于CKF的改進LANDMARC室內(nèi)定位算法_第2頁](http://file4.renrendoc.com/view3/M03/32/0C/wKhkFmYyf7-AANVrAAMAo6wOKPE5682.jpg)
![一種基于CKF的改進LANDMARC室內(nèi)定位算法_第3頁](http://file4.renrendoc.com/view3/M03/32/0C/wKhkFmYyf7-AANVrAAMAo6wOKPE5683.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一種基于CKF的改進LANDMARC室內(nèi)定位算法Title:ImprovedLANDMARCIndoorLocalizationAlgorithmbasedonCKFAbstract:Indoorlocalizationisafundamentalrequirementforvariousapplicationsinsmarthomes,healthcarefacilities,andindustrialenvironments.TheLANDMARC(LocationAlgorithmwithNaiveDistanceComparison)algorithmisapopularmethodforindoorpositioning,butitsuffersfromlimitationsinaccuracyandscalability.ThispaperproposesanimprovedversionoftheLANDMARCalgorithmbasedontheConvolutionalKalmanFilter(CKF)toenhancetheperformanceofindoorlocalization.TheCKFfacilitatesbetterestimationandtrackingofthetarget'sposition,therebyimprovingtheoverallaccuracyandrobustnessofthealgorithm.1.Introduction:Indoorlocalizationhasgainedsignificantattentionduetotheincreasingdemandforlocation-basedservicesinvariousdomains.TheLANDMARCalgorithmhasbeenwidelyusedduetoitssimplicityandeaseofimplementation.However,itreliesonanaivedistancecomparisontechnique,whichlimitsitsaccuracyandscalability.ThispaperaimstoaddresstheselimitationsbyintroducingtheCKF-basedenhancementstotheLANDMARCalgorithm.2.Background:2.1LANDMARCAlgorithm:TheLANDMARCalgorithmutilizesasetofreferencepointswithknownpositionsinanindoorenvironment.Bymeasuringthereceivedsignalstrength(RSS)atthesereferencepoints,thealgorithmestimatestheuser'spositionbasedondistancecomparisons.However,RSS-baseddistanceestimationsuffersfromnon-line-of-sight(NLOS)conditionsandfluctuatingsignalstrengths,limitingtheaccuracyofthealgorithm.2.2ConvolutionalKalmanFilter(CKF):TheCKFisavariantofthewell-knownKalmanFilterthatutilizesConvolutionalNeuralNetworks(CNNs)tolearnthedynamicsofthesystem.Itprovidesamoreaccurateestimateofthetarget'spositionbycombiningdynamicmodelswithmeasurementupdates.ThisapproachmitigatestheimpactofNLOSconditionsandimprovestheoverallrobustnessofthealgorithm.3.ProposedCKF-basedImprovedLANDMARCAlgorithm:3.1CKFIntegration:TheproposedalgorithmintegratestheCKFwiththeLANDMARCalgorithmtoprovideenhancedpositionestimation.TheCKF'sdynamicmodelcapturesthetarget'smovementpatterns,whilemeasurementupdatesusingthereferencepoints'RSSmeasurementsrefinetheestimate.3.2TrainingStage:Inthetrainingstage,aCNNistrainedusingadatasetconsistingofRSSmeasurementscollectedfrommultiplereferencepointsandtheircorrespondingpositions.TheCNNlearnstherelationshipbetweenRSSvaluesandthetarget'sposition.ThetrainedCNNisthenusedasthedynamicmodelintheCKF.3.3PositionEstimationStage:Duringthepositionestimationstage,theCKFpropagatesthetarget'sestimatedpositionbasedonthelearneddynamicsandupdatesitusingRSSmeasurementsobtainedfromthereferencepoints.BycombiningtheCKF'sestimatedpositionwithdistancecomparisonsfromtheLANDMARCalgorithm,arefinedpositionestimateisobtained.4.EvaluationandResults:TheproposedCKF-basedimprovedLANDMARCalgorithmisevaluatedusingreal-worldindoorlocalizationdatasets.AcomparisonismadebetweentheproposedalgorithmandthetraditionalLANDMARCalgorithmtoassesstheimprovementsinaccuracyandrobustness.TheevaluationmetricsincludeMeanSquaredError(MSE)andlocalizationaccuracy.5.Discussion:TheresultsoftheevaluationdemonstratesignificantimprovementsinaccuracyandrobustnesswiththeproposedCKF-basedimprovedLANDMARCalgorithm.TheintegrationoftheCKFenablesbetterestimationofthetarget'sposition,especiallyinNLOSconditions.Thealgorithmalsoexhibitsimprovedscalability,allowingforalargernumberofreferencepointsandbettercoverageoftheindoorenvironment.6.Conclusion:ThispaperpresentsanimprovedversionoftheLANDMARCalgorithmbyintegratingtheCKF.TheproposedalgorithmshowsremarkableimprovementsinaccuracyandrobustnesscomparedtothetraditionalLANDMARCalgorithm.TheCKF-basedenhancementsprovideamorereliableindoorlocalizationsolution,especiallyinchallengingNLOSconditions.Futureworkcanfoc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流運輸配送合同
- 農(nóng)業(yè)合作社合同管理流程的可持續(xù)性
- 二零二四年度企業(yè)安全生產(chǎn)管理制度合同
- 二零二五年度場監(jiān)督管理局信息化系統(tǒng)性能監(jiān)控與優(yōu)化合同3篇
- 二零二四年度農(nóng)業(yè)產(chǎn)業(yè)化合作合同范本3篇
- 二零二四年度農(nóng)產(chǎn)品融資擔(dān)保服務(wù)合同范本3篇
- 二零二四年度醫(yī)院食堂營養(yǎng)套餐采購合同范本3篇
- 二零二四年度醫(yī)院職工入職醫(yī)療安全責(zé)任合同2篇
- 二零二五版汽車4S店租賃及客戶服務(wù)合同3篇
- 二零二四年度企業(yè)內(nèi)部股票轉(zhuǎn)讓監(jiān)管及風(fēng)險評估合同3篇
- 子宮畸形的超聲診斷
- 2024年1月高考適應(yīng)性測試“九省聯(lián)考”數(shù)學(xué) 試題(學(xué)生版+解析版)
- JT-T-1004.1-2015城市軌道交通行車調(diào)度員技能和素質(zhì)要求第1部分:地鐵輕軌和單軌
- (高清版)WST 408-2024 定量檢驗程序分析性能驗證指南
- (正式版)JBT 11270-2024 立體倉庫組合式鋼結(jié)構(gòu)貨架技術(shù)規(guī)范
- DB11∕T 2035-2022 供暖民用建筑室溫?zé)o線采集系統(tǒng)技術(shù)要求
- 《復(fù)旦大學(xué)》課件
- 針灸與按摩綜合療法
- Photoshop 2022從入門到精通
- T-GDWJ 013-2022 廣東省健康醫(yī)療數(shù)據(jù)安全分類分級管理技術(shù)規(guī)范
- DB43-T 2775-2023 花櫚木播種育苗技術(shù)規(guī)程
評論
0/150
提交評論