版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省佛山市石門中學(xué)2023-2024學(xué)年中考數(shù)學(xué)全真模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列各數(shù)中,最小的數(shù)是()A.0 B. C. D.2.若關(guān)于x的一元二次方程x2-2x-k=0沒有實(shí)數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-13.﹣22×3的結(jié)果是()A.﹣5 B.﹣12 C.﹣6 D.124.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對(duì)稱的是()A. B. C. D.5.有15位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得分前8位同學(xué)進(jìn)入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,他只需知道這15位同學(xué)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差6.下列四個(gè)數(shù)表示在數(shù)軸上,它們對(duì)應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是()A.﹣2 B.﹣1 C.0 D.17.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對(duì)于這兩個(gè)圖象,有以下幾種說法:①當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減?。虎诋?dāng)G1與G2沒有公共點(diǎn)時(shí),y1隨x增大而增大;③當(dāng)k=2時(shí),G1與G2平行,且平行線之間的距離為65下列選項(xiàng)中,描述準(zhǔn)確的是()A.①②正確,③錯(cuò)誤 B.①③正確,②錯(cuò)誤C.②③正確,①錯(cuò)誤 D.①②③都正確8.從3、1、-2這三個(gè)數(shù)中任取兩個(gè)不同的數(shù)作為P點(diǎn)的坐標(biāo),則P點(diǎn)剛好落在第四象限的概率是()A. B. C. D.9.計(jì)算的結(jié)果是()A.1 B.﹣1 C.1﹣x D.10.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱軸為直線x=,且經(jīng)過點(diǎn)(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是拋物線上的兩點(diǎn),則y1<y2.其中說法正確的有()A.②③④ B.①②③ C.①④ D.①②④二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.定義一種新運(yùn)算:x*y=,如2*1==3,則(4*2)*(﹣1)=_____.12.如圖,在正六邊形ABCDEF的上方作正方形AFGH,聯(lián)結(jié)GC,那么的正切值為___.13.為有效開展“陽光體育”活動(dòng),某校計(jì)劃購買籃球和足球共50個(gè),購買資金不超過3000元.若每個(gè)籃球80元,每個(gè)足球50元,則籃球最多可購買_____個(gè).14.若分式方程有增根,則m的值為______.15.如圖,半徑為5的半圓的初始狀態(tài)是直徑平行于桌面上的直線b,然后把半圓沿直線b進(jìn)行無滑動(dòng)滾動(dòng),使半圓的直徑與直線b重合為止,則圓心O運(yùn)動(dòng)路徑的長度等于_____.16.如圖,正方形ABCD的邊長為2,點(diǎn)B與原點(diǎn)O重合,與反比例函數(shù)y=的圖像交于E、F兩點(diǎn),若△DEF的面積為,則k的值_______.三、解答題(共8題,共72分)17.(8分)計(jì)算:(﹣2018)0﹣4sin45°+﹣2﹣1.18.(8分)先化簡:()÷,再從﹣2,﹣1,0,1這四個(gè)數(shù)中選擇一個(gè)合適的數(shù)代入求值.19.(8分)如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.①求∠CAM的度數(shù);②當(dāng)FH=,DM=4時(shí),求DH的長.20.(8分)發(fā)現(xiàn)如圖1,在有一個(gè)“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗(yàn)證如圖2,在有一個(gè)“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個(gè)“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個(gè)連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.21.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)點(diǎn)M是拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為m.①當(dāng)∠MBA=∠BDE時(shí),求點(diǎn)M的坐標(biāo);②過點(diǎn)M作MN∥x軸,與拋物線交于點(diǎn)N,P為x軸上一點(diǎn),連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.22.(10分)如圖1,將長為10的線段OA繞點(diǎn)O旋轉(zhuǎn)90°得到OB,點(diǎn)A的運(yùn)動(dòng)軌跡為,P是半徑OB上一動(dòng)點(diǎn),Q是上的一動(dòng)點(diǎn),連接PQ.(1)當(dāng)∠POQ=時(shí),PQ有最大值,最大值為;(2)如圖2,若P是OB中點(diǎn),且QP⊥OB于點(diǎn)P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在OA的延長線上,求陰影部分面積.23.(12分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點(diǎn),延長DE到點(diǎn)F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當(dāng)∠ACB=60°時(shí),求證:四邊形BCFE是菱形.24.如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺(tái)的A處測(cè)得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測(cè)得兩建筑物之間的距離BC是28米,請(qǐng)你幫助小明求出建筑物CD的高度(精確到1米).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)實(shí)數(shù)大小比較法則判斷即可.【詳解】<0<1<,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的大小比較的應(yīng)用,掌握正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)負(fù)數(shù)比較大小,其絕對(duì)值大的反而小是解題的關(guān)鍵.2、C【解析】試題分析:由題意可得根的判別式,即可得到關(guān)于k的不等式,解出即可.由題意得,解得故選C.考點(diǎn):一元二次方程的根的判別式點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握一元二次方程,當(dāng)時(shí),方程有兩個(gè)不相等實(shí)數(shù)根;當(dāng)時(shí),方程的兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程沒有實(shí)數(shù)根.3、B【解析】
先算乘方,再算乘法即可.【詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.【點(diǎn)睛】本題主要考查了有理數(shù)的混合運(yùn)算,熟練掌握法則是解答本題的關(guān)鍵.有理數(shù)的混合運(yùn)算,先乘方,再乘除,后加減,有括號(hào)的先算括號(hào)內(nèi)的.4、D【解析】試題分析:A.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.考點(diǎn):軸對(duì)稱圖形.5、B【解析】
由中位數(shù)的概念,即最中間一個(gè)或兩個(gè)數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進(jìn)入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個(gè)人中,第8名的成績是中位數(shù),故小方同學(xué)知道了自己的分?jǐn)?shù)后,想知道自己能否進(jìn)入決賽,還需知道這十五位同學(xué)的分?jǐn)?shù)的中位數(shù).故選B.【點(diǎn)睛】此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.6、A【解析】
由于要求四個(gè)數(shù)的點(diǎn)中距離原點(diǎn)最遠(yuǎn)的點(diǎn),所以求這四個(gè)點(diǎn)對(duì)應(yīng)的實(shí)數(shù)絕對(duì)值即可求解.【詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個(gè)數(shù)表示在數(shù)軸上,它們對(duì)應(yīng)的點(diǎn)中,離原點(diǎn)最遠(yuǎn)的是-1.故選A.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對(duì)應(yīng)關(guān)系,以及估算無理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.7、D【解析】
畫圖,找出G2的臨界點(diǎn),以及G1的臨界直線,分析出G1過定點(diǎn),根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個(gè)選項(xiàng)分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個(gè)臨界點(diǎn),易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過定點(diǎn)M(2,1),直線MN與直線MQ為G1與G2有公共點(diǎn)的兩條臨界直線,從而當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減??;故①正確;當(dāng)G1與G2沒有公共點(diǎn)時(shí),分三種情況:一是直線MN,但此時(shí)k=0,不符合要求;二是直線MQ,但此時(shí)k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當(dāng)k>0時(shí),此時(shí)y1隨x增大而增大,符合題意,故②正確;當(dāng)k=2時(shí),G1與G2平行正確,過點(diǎn)M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點(diǎn)睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問題,需要數(shù)形結(jié)合,結(jié)合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.8、B【解析】解:畫樹狀圖得:∵共有6種等可能的結(jié)果,其中(1,-2),(3,-2)點(diǎn)落在第四項(xiàng)象限,∴P點(diǎn)剛好落在第四象限的概率==.故選B.點(diǎn)睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內(nèi)點(diǎn)的符號(hào)特點(diǎn)是解題的關(guān)鍵.9、B【解析】
根據(jù)同分母分式的加減運(yùn)算法則計(jì)算可得.【詳解】解:原式====-1,故選B.【點(diǎn)睛】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握同分母分式的加減運(yùn)算法則.10、D【解析】
根據(jù)圖象得出a<0,a+b=0,c>0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,根據(jù)(-2,y1),(,y2)到對(duì)稱軸的距離即可判斷④.【詳解】∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對(duì)稱軸是直線x=,∴a=-b,∴b>0,∴abc<0,故①正確;∵a=-b,∴a+b=0,故②正確;把x=2代入拋物線的解析式得,4a+2b+c=0,故③錯(cuò)誤;∵,故④正確;故選D..【點(diǎn)睛】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系的應(yīng)用,題目比較典型,主要考查學(xué)生的理解能力和辨析能力.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、-1【解析】
利用題中的新定義計(jì)算即可求出值.【詳解】解:根據(jù)題中的新定義得:原式=*(﹣1)=3*(﹣1)==﹣1.故答案為﹣1.【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.12、【解析】
延長GF與CD交于點(diǎn)D,過點(diǎn)E作交DF于點(diǎn)M,設(shè)正方形的邊長為,則解直角三角形可得,根據(jù)正切的定義即可求得的正切值【詳解】延長GF與CD交于點(diǎn)D,過點(diǎn)E作交DF于點(diǎn)M,設(shè)正方形的邊長為,則,故答案為:【點(diǎn)睛】考查正多邊形的性質(zhì),銳角三角函數(shù),構(gòu)造直角三角形是解題的關(guān)鍵.13、1【解析】
設(shè)購買籃球x個(gè),則購買足球個(gè),根據(jù)總價(jià)單價(jià)購買數(shù)量結(jié)合購買資金不超過3000元,即可得出關(guān)于x的一元一次不等式,解之取其中的最大整數(shù)即可.【詳解】設(shè)購買籃球x個(gè),則購買足球個(gè),根據(jù)題意得:,解得:.為整數(shù),最大值為1.故答案為1.【點(diǎn)睛】本題考查了一元一次不等式的應(yīng)用,根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式是解題的關(guān)鍵.14、-1【解析】
增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點(diǎn)睛】本題考查了分式方程的增根,增根確定后可按如下步驟進(jìn)行:化分式方程為整式方程;把增根代入整式方程即可求得相關(guān)字母的值.15、5π【解析】
根據(jù)題意得出球在無滑動(dòng)旋轉(zhuǎn)中通過的路程為圓弧,根據(jù)弧長公式求出弧長即可.【詳解】解:由圖形可知,圓心先向前走OO1的長度,從O到O1的運(yùn)動(dòng)軌跡是一條直線,長度為圓的周長,然后沿著弧O1O2旋轉(zhuǎn)圓的周長,則圓心O運(yùn)動(dòng)路徑的長度為:×2π×5=5π,故答案為5π.【點(diǎn)睛】本題考查的是弧長的計(jì)算和旋轉(zhuǎn)的知識(shí),解題關(guān)鍵是確定半圓作無滑動(dòng)翻轉(zhuǎn)所經(jīng)過的路線并求出長度.16、1【解析】
利用對(duì)稱性可設(shè)出E、F的兩點(diǎn)坐標(biāo),表示出△DEF的面積,可求出k的值.【詳解】解:設(shè)AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點(diǎn)F(,2)代入解得:k=1,故答案為1.【點(diǎn)睛】本題主要考查反比例函數(shù)與正方形和三角形面積的運(yùn)用,表示出E和F的坐標(biāo)是關(guān)鍵.三、解答題(共8題,共72分)17、.【解析】
根據(jù)零指數(shù)冪和特殊角的三角函數(shù)值進(jìn)行計(jì)算【詳解】解:原式=1﹣4×+2﹣=1﹣2+2﹣=【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算:實(shí)數(shù)的運(yùn)算和在有理數(shù)范圍內(nèi)一樣,值得一提的是,實(shí)數(shù)既可以進(jìn)行加、減、乘、除、乘方運(yùn)算,又可以進(jìn)行開方運(yùn)算,其中正實(shí)數(shù)可以開平方.18、,1.【解析】
先算括號(hào)內(nèi)的減法,同時(shí)把除法變成乘法,再根據(jù)分式的乘法進(jìn)行計(jì)算,最后代入求出即可.【詳解】原式=?=?=.∵由題意,x不能取1,﹣1,﹣2,∴x取2.當(dāng)x=2時(shí),原式===1.【點(diǎn)睛】本題考查了分式的混合運(yùn)算和求值,能正確根據(jù)分式的運(yùn)算法則進(jìn)行化簡是解答此題的關(guān)鍵.19、(1)證明見解析;(2)結(jié)論:成立.理由見解析;(3)①30°,②1+.【解析】
(1)只要證明AB=ED,AB∥ED即可解決問題;(2)成立.如圖2中,過點(diǎn)M作MG∥DE交CE于G.由四邊形DMGE是平行四邊形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四邊形ABDE是平行四邊形;
(3)①如圖3中,取線段HC的中點(diǎn)I,連接MI,只要證明MI=AM,MI⊥AC,即可解決問題;②設(shè)DH=x,則AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四邊形ABDE是平行四邊形,推出DF∥AB,推出,可得,解方程即可;【詳解】(1)證明:如圖1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中線,且D與M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四邊形ABDE是平行四邊形.(2)結(jié)論:成立.理由如下:如圖2中,過點(diǎn)M作MG∥DE交CE于G.∵CE∥AM,∴四邊形DMGE是平行四邊形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四邊形ABDE是平行四邊形.(3)①如圖3中,取線段HC的中點(diǎn)I,連接MI,∵BM=MC,∴MI是△BHC的中位線,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②設(shè)DH=x,則AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四邊形ABDE是平行四邊形,∴DF∥AB,∴,∴,解得x=1+或1﹣(舍棄),∴DH=1+.【點(diǎn)睛】本題考查了四邊形綜合題、平行四邊形的判定和性質(zhì)、直角三角形30度角的判定、平行線分線成比例定理、三角形的中位線定理等知識(shí),解題的關(guān)鍵能正確添加輔助線,構(gòu)造特殊四邊形解決問題.20、(1)見解析;(2)見解析;(3)1.【解析】
(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點(diǎn)睛】此題考查多邊形的內(nèi)角和外角,,解題的關(guān)鍵是熟練掌握三角形的外角的性質(zhì),屬于中考??碱}型21、(1)(1,4)(2)①點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②m的值為或【解析】
(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構(gòu)建方程即可解決問題;②因?yàn)辄c(diǎn)M、N關(guān)于拋物線的對(duì)稱軸對(duì)稱,四邊形MPNQ是正方形,推出點(diǎn)P是拋物線的對(duì)稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點(diǎn)B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點(diǎn)D坐標(biāo)(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設(shè)M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當(dāng)點(diǎn)M在x軸上方時(shí),=,解得m=﹣或3(舍棄),∴M(﹣,),當(dāng)點(diǎn)M在x軸下方時(shí),=,解得m=﹣或m=3(舍棄),∴點(diǎn)M(﹣,﹣),綜上所述,滿足條件的點(diǎn)M坐標(biāo)(﹣,)或(﹣,﹣);②如圖中,∵M(jìn)N∥x軸,∴點(diǎn)M、N關(guān)于拋物線的對(duì)稱軸對(duì)稱,∵四邊形MPNQ是正方形,∴點(diǎn)P是拋物線的對(duì)稱軸與x軸的交點(diǎn),即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當(dāng)﹣m2+2m+3=1﹣m時(shí),解得m=,當(dāng)﹣m2+2m+3=m﹣1時(shí),解得m=,∴滿足條件的m的值為或.【點(diǎn)睛】本題考查二次函數(shù)綜合題、銳角三角函數(shù)、正方形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于工作個(gè)人述職報(bào)告集錦六篇
- 重溫寄語精神-展現(xiàn)青春擔(dān)當(dāng)?shù)男牡皿w會(huì)(6篇)
- (教師用書)2024年-學(xué)年高中地理 第3單元 單元活動(dòng) 區(qū)域資源、環(huán)境與可持續(xù)發(fā)展教學(xué)實(shí)錄 魯教版必修3
- 公司新員工辭職報(bào)告合集15篇
- 網(wǎng)上辦公系統(tǒng)系統(tǒng)設(shè)計(jì)
- 陶藝制作過程
- 包裝概述與包裝成本計(jì)算
- 環(huán)保建議書集錦15篇
- 學(xué)校安全教育心得體會(huì)
- 固定資產(chǎn)明細(xì)賬模板-共10篇
- 兼職客服簽約合同范例
- 浙江省杭州市2023-2024學(xué)年高二上學(xué)期期末學(xué)業(yè)水平測(cè)試政治試題 含解析
- 【初中地理】《世界的聚落》課件-2024-2025學(xué)年湘教版地理七年級(jí)上冊(cè)
- 2鍋爐爐膛內(nèi)腳手架搭設(shè)及拆除施工方案
- 注冊(cè)安全工程師管理制度
- 2023-2024學(xué)年全國小學(xué)四年級(jí)上語文人教版期末試卷(含答案解析)
- 2024年大學(xué)經(jīng)濟(jì)管理學(xué)院招聘考試題及答案
- 以諾書-中英對(duì)照
- 《2023版CSCO鼻咽癌診療指南》解讀課件
- 靜配中心述職報(bào)告
- 智能建造施工技術(shù) 課件全套 王春林 項(xiàng)目1-11 智能建造施工概論- 外墻保溫與建筑施工碳排放計(jì)算
評(píng)論
0/150
提交評(píng)論