新人教版八年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案_第1頁
新人教版八年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案_第2頁
新人教版八年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案_第3頁
新人教版八年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案_第4頁
新人教版八年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案_第5頁
已閱讀5頁,還剩136頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

新人教版八年級數(shù)學(xué)下冊全冊導(dǎo)學(xué)案

教學(xué)目錄

第16章二次根式(9)

16.1二次根式(2)

16.2二次根式的乘除(2)

16.3二次根式的加減(3)第19章一次函數(shù)(17)

閱讀與思考海倫一一秦九韶公式19.1變量與函數(shù)(6)

數(shù)學(xué)活動19.1.1變量與函數(shù)

小結(jié)(2)19.1.2函數(shù)的圖象

第17章勾股定理(9)閱讀與思考如何測算巖石的年齡

17.1勾股定理(4)19.2?次函數(shù)(7)

閱讀與思考勾股定理的證明19.2.1正比例函數(shù)

17.2勾股定理的逆定理(3)19.2.2一次函數(shù)

閱讀與思考費馬大定理19.2.3一次函數(shù)與方程、不等式

數(shù)學(xué)活動信息技術(shù)應(yīng)用用計算機畫函數(shù)圖象

小結(jié)(2)19.3課題學(xué)習(xí)選擇方案(2)

數(shù)學(xué)活動

第18章平行四邊形(15)小結(jié)(2)

18.1平行四邊形(7)

18.1.1平行四邊形的性質(zhì)第20章數(shù)據(jù)的分析(12)

18.1.2平行四邊形的判定20.1數(shù)據(jù)的集中趨勢(6)

18.2特殊的平行四邊形(6)20.1.1平均數(shù)

18.2.1矩形20.1.2中位數(shù)和眾數(shù)

18.2.2菱形20.2數(shù)據(jù)的波動程度(2)

18.2.3正方形閱讀與思考數(shù)據(jù)波動程度的幾種度量

實驗與探究豐富多彩的正方形20.3課題學(xué)習(xí)

數(shù)學(xué)活動體質(zhì)健康測試中的數(shù)據(jù)分析(2)

小結(jié)(2)數(shù)學(xué)活動

小結(jié)(2)

第1頁

第二十一章二次根式

16.1《二次根式(1)》學(xué)案

課型:上課時間:課時:

學(xué)習(xí)內(nèi)容:

二次根式的概念及其運用

學(xué)習(xí)目標(biāo):

1、理解二次根式的概念,并利用右(a20)的意義解答具體題目.

2、提出問題,根據(jù)問題給出概念,應(yīng)用概念解決實際問題.

學(xué)習(xí)過程

一、自主學(xué)習(xí)

(一)、復(fù)習(xí)引入

(學(xué)生活動)請同學(xué)們獨立完成下列三個問題:

3

問題1:已知反比例函數(shù)丫=一,那么它的圖象在第一象限橫、縱坐標(biāo)相等的點的坐標(biāo)是

x

.(Vs,Vs).

問題2:甲射擊6次,各次擊中的環(huán)數(shù)如下:8、7、9、9、7、8,那么甲這次射擊的方差是S?,

那么S=.(.)

(~)學(xué)生學(xué)習(xí)課本知識

(三)、探索新知

1、知識:如6、Vio,都是一些正數(shù)的算術(shù)平方根.像這樣一些正數(shù)的算術(shù)平方根的

式子,我們就把它稱二次根式.因此,一般地,我們把形如的式子叫做二次根式,“一”稱

為.

例如:形如、、是二次根式。

形如、、不是二次根式。

2、應(yīng)用舉例

例L下列式子,哪些是二次根式,哪些不是二次根式:立、6、二、G(x>0)、、歷、蚯、

X

-V2——、Jx+y(x20,y20).

x+y

解:二次根式有::不是二次根式的有:-

例2.當(dāng)x是多少時,J3x-1在實數(shù)范圍內(nèi)有意義?

解:由得:

第2頁

當(dāng)時,"c二1在實數(shù)范圍內(nèi)有意義.

(3)注意:1、形如、「(a20)的式子叫做二次根式的概念;

2、利用“&(ae0)”解決具體問題

3、要使二次根式在實數(shù)范圍內(nèi)有意義,必須滿足被開方數(shù)是非負(fù)數(shù)。

二、學(xué)生小組交流解疑,教師點撥、拓展

例3.當(dāng)x是多少時,J2X+3+—匚在實數(shù)范圍內(nèi)有意義?

x+l

例4(1)已知y=j2—x+Jx-2+5,求上的值.(答案:2)

y

⑵若+=1=0,求aZ^+b:004的值.(答案:

三、鞏固練習(xí)

教材練習(xí).

四、課堂檢測

(1)、簡答題

1.下列式子中,哪些是二次根式那些不是二次根式?

-幣#iVxXV4V16-

X

(2)、填空題

1.形如的式子叫做二次根式.

2.面積為5的正方形的邊長為.

(3)、綜合提高題

1.某工廠要制作一批體積為In?的產(chǎn)品包裝盒,其高為0.2m,按設(shè)計需要,底面應(yīng)做成正方形,

試問底面邊長應(yīng)是多少?

2.若向二有意義,貝ijG7:.

3.使式子J-(X-5)2有意義的未知數(shù)x有()個.

A.0B.1C.2D.無數(shù)

4.已知a、b為實數(shù),且Ja-5+2J10-2a=b+4,求a、b的值.

16.1《二次根式(2)》學(xué)案

第3頁

課型:上課時間:課時:

學(xué)習(xí)內(nèi)容:

1.\[a(a20)是一個非負(fù)數(shù);2.(〃")2=a(a20).

學(xué)習(xí)目標(biāo):

1、理解〃■(aNO)是一個非負(fù)數(shù)和(&)2=a(a20),并利用它進行計算和化簡.

2、通過復(fù)習(xí)二次根式的概念,用邏輯推理的方法推出,?(a20)是一個非負(fù)數(shù),用具體數(shù)據(jù)結(jié)合

算術(shù)平方根的意義導(dǎo)出(&)2=a(a)0);最后運用結(jié)論嚴(yán)謹(jǐn)解題.

教學(xué)過程

一、自主學(xué)習(xí)

(-)復(fù)習(xí)引入

I.什么叫二次根式?

2.當(dāng)a》0時,〃■叫什么?當(dāng)a<0時,、石有意義嗎?

(二)學(xué)生學(xué)習(xí)課本知識

(三)、探究新知

1、4a(a)0)是一個數(shù)。(正數(shù)、負(fù)數(shù)、零)

因為。

2、重點:、石(a20)是一個非負(fù)數(shù).

3、根據(jù)算術(shù)平方根的意義填空:

(-\/4)?=;(V2)~=;(A/9):;(V3):;

同理可得:(A/2)2=2,(V9)2=9,(-\/3)2=3,(./—)2=—,(y/())2=0,

V33

所以(&)2=ago)

(4)例1計算

1、(g)2=_2、(3后2=___3、(左)2=—4、(日產(chǎn)---------

(5)注意:1、y[a(a》0)是一個非負(fù)數(shù);(、/£)'a(a20)及其運用.

2、用分類思想的方法導(dǎo)出JZ(a20)是一個非負(fù)數(shù);用探究的方法導(dǎo)出(&)2=a

(a)0).

二、學(xué)生小組交流解疑,教師點撥、拓展

2

例2計算1.(V7+T)2(x^O)2.(V7)3.(+2a+1)-

例3在實數(shù)范圍內(nèi)分解下列因式:

第4頁

(1)X2-3(2)X4-4(3)2X2-3

三、鞏固練習(xí)

(一)計算下列各式的值:

(V18)2=(日)2=(且產(chǎn)(VO)2=(4^)2=(3y/5)2-(5y/3)2

v34V8

(二)課本P7、1

四、課堂檢測

(-),選擇題

1.下列各式中居、技、“2一1、證+修、6+20、J-144,二次根式的個數(shù)是().

A.4B.3C.2D.1

(二)、填空題

1.(-6)2=_______.2.已知有意義,那么是一個數(shù).

(三)、綜合提高題

1.計算

2

(1)(V9)2(2)-(V3)2(3)(-3^|)(4)(273+372)(273-372)

2.把下列非負(fù)數(shù)寫成一個數(shù)的平方的形式:

(1)5=(2)3.4=(3)-(4)x(x20)=

6

3.已知Jx_):+1+y/x-3=0,求X,的值.

4.在實數(shù)范圍內(nèi)分解下列因式:

(1)X2-2(2)X4-93X2-5

16.1《二次根式(3)》學(xué)案

課型:上課時間:課時:

學(xué)習(xí)內(nèi)容:=a(a20)

第5頁

學(xué)習(xí)目標(biāo):

1、理解J/=a(a>0)并利用它進行計算和化簡.

2、通過具體數(shù)據(jù)的解答,探究J/=a(a20),并利用這個結(jié)論解決具體問題.

教學(xué)過程

一、自主學(xué)習(xí)

(一)、復(fù)習(xí)引入

1.形如(a20)的式子叫做二次根式;

2.y[a(a20)是--個非負(fù)數(shù);3.(Va)2—a(a>0).

那么,我們猜想當(dāng)a20時,J戶=2是否也成立呢?下面我們就來探究這個問題.

(二)、自主學(xué)習(xí)

學(xué)生學(xué)習(xí)課本知識

(三)、探究新知

1、填空:根據(jù)算術(shù)平方根的意義,

4^=;Vo.012=;J(看)2=_;Jc|)2=;后=_:Je)2

2、重點:4c^=a(a'O)

例1化筒

(1)V9(2)J(-4)2(3)V25(4)J(-3〉

解:(1)如=后=(2)J(-4)2="=—

(3)J25=A/S^'=(4)J(-3)~==___

3、注意:(1)=a(a20).(2)、只有a20時,J/=2才成立.

二、學(xué)生小組交流解疑,教師點撥、拓展

例2填空:當(dāng)a'O時,疹=____;當(dāng)a<0時,J/=,并根據(jù)這一性質(zhì)回答下列問

題.

(1)若〃7=a,則a可以是什么數(shù)?因為二a,所以aNO;

(2)若J/=-a,則a可以是什么數(shù)?因為〃7Aa,所以aWO;

(3)后,a,則a可以是什么數(shù)?因為當(dāng)a20時J/=a,要使J/>a,即使a>a所以

a不存在:當(dāng)a<0時,J/=-a,要使>a,即使-a>a,a<0綜上,a<0

例3當(dāng)x>2,化簡J(X-2)2-J(1—2X)2.

第6頁

三、鞏固練習(xí)

教材練習(xí)

四、課堂檢測

(一)、選擇題

1.^(2—)2+,(—2.)2的值是().A.0B?:C.4g

(二)、填空題

1.-70.0004=.

2.若J而是一個正整數(shù),則正整數(shù)m的最小值是.

三、綜合提高題

1.先化簡再求值:當(dāng)a=9時,求a+)1—24+/的值,甲乙兩人的解答如下:

甲的解答為:原式=a+J(l—a)2=a+(1-a)=1;

乙的解答為:原式=a+J(l—a)?=a+(a-1)=2a-l=17.

兩種解答中,的解答是錯誤的,錯誤的原因是.

2.若|1995-a|+Va-2000=a,求aT9952的值.

(提示:先由a-2000^0,判斷1995-a的值是正數(shù)還是負(fù)數(shù),去掉絕對值)

22

3.若-3WxW2時,試化簡|x-2|+7U+3)+A/X-10X+25O

16.2二次根式的乘除(1)

課型:上課時間:課時:

學(xué)習(xí)內(nèi)容

Ja,yjh=y/ah(a20,b20),反之,Jb(a20,b20)及其運用.

學(xué)習(xí)目標(biāo)

理解五?4b-4ab(a20,b》0),4ab=\[a,4b(a20,b20),并利用它們進行計算和

第7頁

化簡

學(xué)習(xí)過程:

一、自主學(xué)習(xí)

(-)復(fù)習(xí)引入

1.填空:(1)V4X79=___,74x9=____;V4XV9_V4x9

(2)V16xV25=___,J16x25=—;V16x^25_716x25

(3)V100X736=—,7100x36=—.VlOOXV36_7100x36(二)、探索新

1、學(xué)生交流活動總結(jié)規(guī)律.

2、一般地,對二次根式的乘法規(guī)定為

4a,y[b=4ah.(a^O,b20反過來:[=&〃(a,0,b20)

例L計算

(3)X2V10(4)45a?[ay

(1)y/5X-\/*7(2)XV93A/6

例2化簡

(1)79x16(2)V16x81(3)V81X100(4)y/9x2y2(5)底

二、鞏固練習(xí)

(5)3V6X2>/10?y[5a?J'y

(1)計算:①屈乂瓜

(2)化簡:V20;M;、/24;x/54;Jl2a%2

(3)教材練習(xí)

三、學(xué)生小組交流解疑,教師點撥、力6展

(-)例3.判斷下列各式是否正確,不正確的請予以改正:

(1)J(—4)x(—9)—J-4xJ-9

(2)J4—XV25=4XJ—XV25=4.—X/25=4y/12=8y/3

\25725V25

(-)歸納小結(jié)

(1)y[a<4b=y[ab=(a20,b20),\[ab=Ja,4b(a20,b20)及其運用.

(2)要理解4ab(a<0,b<0)=y[b,如J(—2)x(—3)=J—(—2)x—(—3)或

第8頁

V(-2)x(-3)=72x3=72x百.

四、課堂檢測

(-),選擇題

1.若直角三角形兩條直角邊的邊長分別為JFcm和gem,那么此直角三角形斜邊長是

().A.3V5cmB.3V3cmC.9cmD.27cm

一,的結(jié)果是().

2.化簡aA.\j—ciB.\fciC.-J—、D.~y[ci

a

3.等式JT萬二JP二I成立的條件是()

A.xelB.x2TC.T《xWlD.x21或x〈T

(二)、填空題1.71014=.

2.自由落體的公式為S=;gt?(g為重力加速度,它的值為IOm/s2),若物體下落的高度為720m,

則下落的時間是.

三、綜合提高題

1.?個底面為30cmX30cm長方體玻璃容器中裝滿水,現(xiàn)將一部分水例入一?個底面為正方形、

高為10cm鐵桶中,當(dāng)鐵桶裝滿水時,容器中的水面下降了20cm,鐵桶的底面邊長是多少厘米?

16.2二次根式的乘除(2)

課型:上課時間:課時:__________

學(xué)習(xí)內(nèi)容:

4a[a[ay[a

(a>0,b>0),反過來(a>0b>0)及利用它們進行計算和化簡.

而YzV廠訪

學(xué)習(xí)目標(biāo):

理解2=1b>0)和《專心》0,b>0)及利用它們進行運算.

第9頁

教學(xué)過程

一、自主學(xué)習(xí)

(-)復(fù)習(xí)引入

1.寫出二次根式的乘法規(guī)定及逆向等式.

2.填空

⑴旦」叵;規(guī)律:也

716V16V16V16

⑵理,.叵V16

V36V36V36V?6

(3)3=,JT_V4

VI6V16V16JV-16

⑷回一V36但

V81481V81(81

(二)、探索新知

一般地,對二次根式的除法規(guī)定:

4a萬,值?/j

-尸=、—(a20,b>0)反過來,b>0)

&\b

下面我們利用這個規(guī)定來計算和化簡一些題目.

二、鞏固練習(xí)

2、化筒:

64b2

⑴后(2)(3)

9a2

3、鞏固練習(xí)

教材練習(xí).

三、學(xué)生小組交流解疑,教師點撥、拓展

例3.已知」上三=半二土,且x為偶數(shù),求(1+x)X?—5x+4

1、的值.

\x-6,x-6x2-l

2、歸納小結(jié)

(1)本節(jié)課要掌握坐=—(a20,b>0)和(a20,b>0)及其運用.

并利用它們進行計算和化簡.

四、課堂檢測

(一)、選擇題

第10頁

L計算拈俱一V2

的結(jié)果是().A.B.一C.D.

7~T

2.閱讀下列運算過程:—U==■—>—72=-—7=275尸=-2-7--5

V3V3xV33V5V5xV55

2

數(shù)學(xué)上將這種把分母的根號去掉的過程稱作“分母有理化”,請化簡布的結(jié)果是().

1

26c-D

A.B.3

11

1.分母有理化:(1);(2)

372=V12

2.已知x=3,y=4,z=5,那么正+后的最后結(jié)果是

n

三、綜合提高題(1)—

m

16.2二次根式的乘除(3)

課型:上課時間:課時:

學(xué)習(xí)內(nèi)容

最簡二次根式的概念及利用最簡二次根式的概念進行二次根式的化簡運算.

學(xué)習(xí)目標(biāo)

理解最簡二次根式的概念,并運用它把不是最簡二次根式的化成最簡二次根式.

學(xué)習(xí)過程

一、自主學(xué)習(xí)

(-)復(fù)習(xí)引入

1.計算(1)與,(2)半,(3)普

A/5---\/27=--=

2.現(xiàn)在我們來看本章引言中的問題:如果兩個電視塔的高分別是h,km,h水m,那么它們的傳播半徑

第11頁

的比是.

(二)、探索新知

觀察上面計算題1的最后結(jié)果,可以發(fā)現(xiàn)這些式子中的二次根式有如下兩個特點:

1.被開方數(shù)不含分母;

2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.

我們把滿足上述兩個條件的二次根式,叫做最簡二次根式.

那么上題中的比是否是最簡二次根式呢?如果不是,把它們化成最簡二次根式.

//相

yj2Rht__)\lRhx_._y

2Rh2\h2

例i.化簡:⑴:島⑵、/x2y4+x4y2⑶

例2.如圖,在RtZXABC中,ZC=90°,AC=2.5cm,BC=6cm,求AB的長.

二、鞏固練習(xí)

教材練習(xí)

三、學(xué)生小組交流解疑,教師點撥、拓展

1、觀察下列各式,通過分母有理數(shù),把不是最簡二次根式的化成最簡二次根式:

1_1X(0_1)=逝一1_6]

V2+1(V2+1)(V2-1)-2-1

1_1x(6__也―血_瓜_口

V3+V2(V3+V2)(V3-V2)-3-2''一

同理可得:—j=—尸=J疝-A/3,......

V4+V3

從計算結(jié)果中找出規(guī)律,并利用這一規(guī)律計算

(—)=—+—j=---產(chǎn)+—j=---1=+.../---/)(,2002+1)的值.

V2+1V3+V2V4+V3V2002+V2001

2、歸納小結(jié)

(1).重點:最簡二次根式的運用.

(2).難點關(guān)鍵:會判斷這個二次根式是否是最簡二次根式.

四、課堂檢測

(一)、選擇題

1

噸(y>0)化為最簡二次根式是().

拳(y>0)B.而(y>0)C.五(y>0)D.以上都不對

A.

yjyy

第12頁

2.把(a-1)J———中根號外的(a-1)移入根號內(nèi)得().

V<2-1

A.a—1B.J1—aC.-yja—1D.-yjl—a

3.化簡若的結(jié)果是(

B.弓C.當(dāng)口.一血

二、填空題1.化簡Jx4+f-=.(xNO)

2.aJ—孥化簡二次根式號后的結(jié)果是.

三、綜合提高題

廿4….aNx~—4-+v4—x-+1-I/.

若x、y為頭數(shù),且丫=--------------------,求+的值.

16.3二次根式的加減(1)

學(xué)習(xí)內(nèi)容:

二次根式的加減

學(xué)習(xí)目標(biāo):

1、理解和掌握二次根式加減的方法.

2、先提出問題,分析問題,在分析問題中,滲透對二次根式進行加減的方法的理解.再總結(jié)經(jīng)驗,

用它來指導(dǎo)根式的計算和化簡.

學(xué)習(xí)過程

一、自主學(xué)習(xí)

(一)、復(fù)習(xí)引入

計算.(1)2x+3x;(2)2X2-3X2+5X2;(3)x+2x+3y;(4)3a2-2a2+a3

以上題目,是我們所學(xué)的同類項合并.同類項合并就是字母不變,系數(shù)相加減.

(二)、探索新知

學(xué)生活動:計算下列各式.

第13頁

(1)2V2+3V2(2)2Vs-3-\/8+5V8

(3)V7+2V7+379x7(4)3V3-2V3+V2

由此可見,二次根式的被開方數(shù)相同也是可以合并的,如2血與虛表面上看是不相同的,但它們

可以合并嗎?也可以.

3V2+V8=3A/2+2V2=5V23V3+J27=3y/3+3V3=6V3

所以,二次根式加減時,可以先將二次根式化成最簡二次根式,再將被開方數(shù)相同的二次根式

進行合并.

例1.計算(1)y/s+VT8(2)Jl6x+J64x

例2.計算

(1)3-48-9+3y/12(2)(—48+-20)+(y/12->f5)

歸納:第一步,將不是最簡二次根式的項化為最簡二次根式;

第二步,將相同的最簡二次根式進行合并.

二、鞏固練習(xí)教材練習(xí)

三、學(xué)生小組交流解疑,教師點撥、拓展

1、例3.已知4x2+y2-4x-6y+10=0,求(yXs/9x+y2)-(x2^--5x^-)的值.

2、歸納小結(jié)

本節(jié)課應(yīng)掌握:(1)不是最簡二次根式的,應(yīng)化成最簡二次根式;(2)相同的最簡二次根式進行

合并.

重難點關(guān)鍵1.重點:二次根式化簡為最簡根式.

2.難點關(guān)鍵:會判定是否是最簡二次根式.

四、課堂檢測

(一)、選擇題

1.以下二次根式:①屈;②后;③若;④亞中,與百是同類二次根式的是().

A.①和②B.②和③C.①和④D.③和④

2.下列各式:①30+3=6百;②177=1;③五+瓜=&=2叵;二2五,其中錯

7

誤的有().

A.3個B.2個C.1個D.0個

二、填空題

第14頁

1.在次、-y[15a.2演、7125>2歷\3而工、-2、口中,與島是同類二次根式

33aV8

的有________.

2.計算二次根式5&-3振-7&+9揚的最后結(jié)果是.

三、綜合提高題

1.已知6七2.236,求(病-,《)-(&+[巫)的值.(結(jié)果精確到0.01)

2.先化簡,再求值.(6xJ1+1■府)-(4xjj卜),其中x-1-,y=27.

16.3二次根式的加減(2)

學(xué)習(xí)內(nèi)容:

利用二次根式化簡的數(shù)學(xué)思想解應(yīng)用題.

學(xué)習(xí)目標(biāo):

1、運用二次根式、化筒解應(yīng)用題.

2、通過復(fù)習(xí),將二次根式化成被開方數(shù)相同的最簡二次根式,進行合并后解應(yīng)用題.

學(xué)習(xí)過程

一、自主學(xué)習(xí)

(-)、復(fù)習(xí)引入

上節(jié)課,我們已經(jīng)學(xué)習(xí)了二次根式如何加減的問題,我們把它歸為兩個步驟:第一步,先將二次

根式化成最簡二次根式:第二步,再將被開方數(shù)相同的二次根式進行合并,

(二)、探索新知

例1.如圖所示的Rt4ABC中,/B=90°,點P從點B開始沿BA邊以1厘米/秒的速度向點A移

動;同時,點Q也從點B開始沿BC邊以2厘米/秒的速度向點C移動.問:幾秒后△PBQ的面積為35

平方厘米?PQ的距離是多少厘米?(結(jié)果用最簡二次根式表示)

分析:設(shè)x秒后4PBQ的面積為35平方厘米,那么PB=x,BQ=2x,根據(jù)三角形

第15頁

APB

面積公式就可以求出X的值.

解:設(shè)X后aPBQ的面積為35平方厘米.

則有PB=x,BQ=2x

依題意,得:求解得:x=V35

所以屆秒后aPeQ的面積為35平方厘米.

PQ=

答:莊秒后△PBQ的面積為35平方厘米,PQ的距離為5近厘米.

例2.要焊接如圖所示的鋼架,大約需要多少米鋼材(精確到0.1m)?

分析:此框架是由AB、BC、BD、AC組成,所以要求鋼架的鋼材,只需知道這四段的長度.

解:由勾股定理,得AB=

BC=

所需鋼材長度為:AB+BC+AC+BD==

二、鞏固練習(xí)

教材練習(xí)

三、學(xué)生小組交流解疑,教師點撥、拓展

1、例3.若最簡根式加劃4a+3b與根式,2"2一/+6/是同類二次根式,求a、b的值.(

同類二次根式就是被開方數(shù)相同的最簡二次根式)

分析:同類二次根式是指幾個二次根式化成最簡二次根式后,被開方數(shù)相同的根式;解:首

先把根式1248一〃+6〃化為最簡二次根式:

42加-/+6/=

由題意得方程組:________________

________________解方程組得:

2、本節(jié)課應(yīng)掌握運用最簡二次根式的合并原理解決實際問題.

四、課堂檢測

(一)、選擇題

1.已知直角三角形的兩條直角邊的長分別為5和5,那么斜邊的長應(yīng)為().(結(jié)果用最簡二

次根式)A.572B.V5OC.275D.以上都不對

2.小明想自己釘一個長與寬分別為30cm和20cm的長方形的木框,為了增加其穩(wěn)定性,他沿長

方形的對角線又釘上了一根木條,木條的長應(yīng)為()米.(結(jié)果同最筒二次根式表示)A.13V100

B.V1300C.loV13D.5yfl3

(二)、填空題(結(jié)果用最簡二次根式)

1.有一長方形魚塘,已知魚塘長是寬的2倍,面積是IGOOn?,魚塘的寬是m.

2.已知等腰直角三角形的直角邊的邊長為血,那么該等腰直角三角形的周長是—.

(三)、綜合提高題

第16頁

1.若最簡二次根式2,3〃?2-2與,刑4m2-10是同類二次根式,求m、n的值.

3

2.同學(xué)們,我們觀察下式:(血-1)2=(V2)2-2?1-8+12=2-2近+1=3-2J5

反之,3-2=2-2+1=(V2-1)2

3-2V2=(V2_1)^3—2,y/2,-y/i-1

求:(1))3+2后;(2)"+26;(3)你會算小4一店嗎?

16.3二次根式的加減(3)

學(xué)習(xí)內(nèi)容:

含有二次根式的單項式與單項式相乘、相除;多項式與單項式相乘、相除;多項式與多項式相乘

相除;乘法公式的應(yīng)用.

學(xué)習(xí)目標(biāo):

1、含有二次根式的式子進行乘除運算和含有二次根式的多項式乘法公式的應(yīng)用.

2、復(fù)習(xí)整式運算知識并將該知識運用于含有二次根式的式子的乘除、乘方等運算.

學(xué)習(xí)過程

一、自主學(xué)習(xí)

()復(fù)習(xí)引入

1.計算(1)(2x+y)?zx==(2)(2x2y+3xy2)+xy===

2.計算(1)(2x+3y)(2x-3y)(2)(2x+l)2+(2x-l)2

(二)、探索新知

如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

例1.計算:(1)(6+正)XV3(2)(4V6_3V2)4-2V2

例2.計算(1)(V5+6)(3-V5)(2)(V10+V7)(V10-V7)

第17頁

二、鞏固練習(xí)

課本練習(xí)

三、學(xué)生小組交流解疑,教師點撥、拓展

1、例3.已知,X==2化簡I——=-=+—j=---=,并求值.

A/X+1+JXV-X+l-yjx

(Vx-f-T—V%)2(JX+1+Vx)~

解:原式二二

(Jx+1+Vx)(Vx+T-Vx)(Jx+1-A/X)(VX+1+Vx)

(>/x+1—(>/x+1+"\/x)2

==---------------------+---------------------

(x+l)-x(x+1)-%

==(x+1)+x-2yjx(九+1)+x+2dx(x+1)

==4x+2

當(dāng)X==2時???原式=4X2+2=10

2、、歸納小結(jié)

本節(jié)課應(yīng)掌握二次根式的乘、除、乘方等運算.

四、課堂檢測

(一)、選擇題1.(扃-3至+2?。郏血的值是().

A.—73-3730B.3廊二百C.2亞二百D.—73-730

3333

2.計算(4+J7^T)()的值是().A.2B.3C.4D.1

(二)、填空題1.(--+—)2的計算結(jié)果(用最簡根式表示)是________.

22

2.(1-2/)(1+2百)-(273-1)2的計算結(jié)果(用最簡二次根式表示)是—

3.若x=y/2-1,貝ljX2+2X+1=

4.已知a=3+28,b=3-2V2,則a2b-ab?=

三、綜合提高題

1.化簡

V10+714+715+721

2.當(dāng)x=——時,求X+1+工EZ+"+l—的值.(用最簡二次根式表示)

V2-1x+i-jr+xx+i+jr+x

課外知識

(1)>練習(xí):下列各組二次根式中,是同類二次根式的是().

第18頁

A.07與B.《a/,與口與〃D.+n與J,”+〃

(2)、互為有理化因式:互為有理化因式是指兩個二次根式的乘積是有理數(shù),不含有二次根式:如

26與6就是互為有理化因式;4+1與J7T也是互為有理化因式.

練習(xí):1、血+6的有理化因式是一;

2、X-J5的有理化因式是-3、26的有理化因式是.

二次根式復(fù)習(xí)課(1)

學(xué)習(xí)目標(biāo):

1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡含二次根式的式子;

2.熟練地進行二次根式的加、減、乘、除混合運算.

學(xué)習(xí)重點和難點

重點:含二次根式的式子的混合運算.

難點:綜合運用二次根式的性質(zhì)及運算法則化簡和計算含二次根式的式子.

學(xué)習(xí)過程

一、自主學(xué)習(xí)

(-)復(fù)習(xí)

1.二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各式成立的條件.

(1)(2)(3)

2.二次根式的乘法及除法的法則是什么?用式子表示出來.

乘法法則:.除法法則:

反過來:?

3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

⑴a=(、W)2(a?0);(2)|a|=7?.

4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

第19頁

⑴萌尸=a(a)O)與a=(正義力。);

(2)-^b=Va*7b(a^0,b》0)與瓜?7b=Vab(a^O,b>0);

⑶4=知》。與曾岳b>0)-

7

例如,化簡(,可以用3種方法:

⑴直接約分亍察="

(2)分母有理化亍孺=立

(3)看作二次根式的除法書==幣.

5.J更不一定能化成(、局2.

當(dāng)a》0時,如(石)2=后=(石)2,(旃)2=7^=(To)2,此時,7?

=(、Q2;當(dāng)a<0時,正2)2=后=(上],但71無意義,所以J(-2)2r(d,此

時47盧(石尸.

二、復(fù)習(xí)練習(xí)課本知識

二次根式復(fù)習(xí)課(2)

學(xué)習(xí)目標(biāo):

1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練地化簡含二次根式的式子;

2.熟練地進行二次根式的加、減、乘、除混合運算.

學(xué)習(xí)重點和難點

重點:含二次根式的式子的混合運算.

難點:綜合運用二次根式的性質(zhì)及運算法則化簡和計算含二次根式的式子.

學(xué)習(xí)過程

一、例題點講

例1x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

(1)73-x+Jx-2;(2)-----=;

1-代

(3)<\/2x+J-2x;(4)二一.

3x

分析:

(1)題是兩個二次根式的和,X的取值必須使兩個二次根式都有意義;

(2)題中,式子的分母不能為零,即x不能取使1-必=0的值;

(3)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

第20頁

(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,

同時使分母的值不等于零.

解:⑴、

(2)、

(3)、

(4)、

例2己知m,n為實數(shù),且滿足m=曲二匚?士,求6m-3n的值.

分析:先根據(jù)已知條件求出m與n的值,冉求多項式6m-3n的值.二次根式4K

與、-7有意義的條件分別是r-9》0及9-不》0,從中求得n的值,從而確定m的值.

a2-4a+4J3-a1

計算—-----------?---------+—=

a2-4a+3a-2J1-a

分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式

后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3-a20和1-a

>0.

指出:由于二次根式的基本性質(zhì)后7=|a|要由a的取值范圍確定,即

a(a>0),

-a(a<0).

而,顧=Va*在成立的條件是a10及b》0(a30,b〉0),因此在運用

這些性質(zhì)化簡含二次根式的式子時.,要注意上述條件,并要闡述清楚是怎樣滿足這些條件

例4n+2-Vn2_4n+2+dn”-4

分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運

算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變

形,就可以使運算變?yōu)楹喗?

解設(shè)a=n+2+Jn2-4,b=n+2--x/n2-4,那么

a+b=2(n+2),ab=(n+2)--(n'-4)=4(n+2),

第21頁

aba2+b2(a+b)2-2ab(a+b)2_4(n+2)2

所以原式=-H—=--------------------------=-2=-2n.

baabab------ab4(n+2)

三、課堂練習(xí)

1.選擇題:

(l)7(a-2)2=2-a,a的取值范圍是[]

A.aW2B.a22

C.a-7^-2D.aV2

(2)x<-2時,J(x+2)2等于[]

A.x+2B.-x-2

C.-x+2D.x-2

(3)化簡J(x-a)2+J(x+a)2(0<x<a)等于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論