版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省福州市平潭縣市級名校2024屆中考數(shù)學全真模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.據(jù)媒體報道,我國最新研制的“察打一體”無人機的速度極快,經(jīng)測試最高速度可達204000米/分,這個數(shù)用科學記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1062.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=63.給出下列各數(shù)式,①②③④計算結(jié)果為負數(shù)的有()A.1個 B.2個 C.3個 D.4個4.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根5.若分式有意義,則的取值范圍是()A.; B.; C.; D..6.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個數(shù)是()A.4 B.3 C.2 D.17.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<108.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側(cè)面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm9.當函數(shù)y=(x-1)2-2的函數(shù)值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數(shù)10.已知二次函數(shù)y=x2﹣4x+m的圖象與x軸交于A、B兩點,且點A的坐標為(1,0),則線段AB的長為()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.計算(x4)2的結(jié)果等于_____.12.一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,那么不等式kx+b<0的解集是_____.13.如圖,在平面直角坐標系中,菱形ABCD的頂點A的坐標為(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上.若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為_______.14.用48米長的竹籬笆在空地上,圍成一個綠化場地,現(xiàn)有兩種設(shè)計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現(xiàn)請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.15.如圖,矩形ABCD中,AB=2,點E在AD邊上,以E為圓心,EA長為半徑的⊙E與BC相切,交CD于點F,連接EF.若扇形EAF的面積為43π,則16.如圖,在Rt△ABC中,∠C=90°,AM是BC邊上的中線,cos∠AMC,則tan∠B的值為__________.三、解答題(共8題,共72分)17.(8分)先化簡:,再從、2、3中選擇一個合適的數(shù)作為a的值代入求值.18.(8分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數(shù).19.(8分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?20.(8分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.21.(8分)如圖,已知點在反比例函數(shù)的圖象上,過點作軸,垂足為,直線經(jīng)過點,與軸交于點,且,.求反比例函數(shù)和一次函數(shù)的表達式;直接寫出關(guān)于的不等式的解集.22.(10分)如圖1,四邊形ABCD,邊AD、BC的垂直平分線相交于點O.連接OA、OB、OC、OD.OE是邊CD的中線,且∠AOB+∠COD=180°(1)如圖2,當△ABO是等邊三角形時,求證:OE=AB;(2)如圖3,當△ABO是直角三角形時,且∠AOB=90°,求證:OE=AB;(3)如圖4,當△ABO是任意三角形時,設(shè)∠OAD=α,∠OBC=β,①試探究α、β之間存在的數(shù)量關(guān)系?②結(jié)論“OE=AB”還成立嗎?若成立,請你證明;若不成立,請說明理由.23.(12分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.24.一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:204000米/分,這個數(shù)用科學記數(shù)法表示2.04×105,故選C.考點:科學記數(shù)法—表示較大的數(shù).2、D【解析】
本題應(yīng)對原方程進行因式分解,得出(x-6)(x+1)=1,然后根據(jù)“兩式相乘值為1,這兩式中至少有一式值為1.”來解題.【詳解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故選D.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的提點靈活選用合適的方法.本題運用的是因式分解法.3、B【解析】∵①;②;③;④;∴上述各式中計算結(jié)果為負數(shù)的有2個.故選B.4、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個不相等的實數(shù)根.故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.5、B【解析】
分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.6、B【解析】試題分析:由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進行判斷;根據(jù)拋物線與x軸的交點個數(shù)得到b2﹣4ac>0,加上a<0,則可對②進行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對③進行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對④進行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設(shè)A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.7、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質(zhì)、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長是解題的關(guān)鍵.8、B【解析】
由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【詳解】解:設(shè)圓錐母線長為Rcm,則2π=,解得R=3cm;設(shè)圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【點睛】本題考查了圓錐的概念和弧長的計算.9、B【解析】分析:利用二次函數(shù)的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當x<1時,函數(shù)值y隨著x的增大而減??;故選B.點睛:本題主要考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).10、B【解析】
先將點A(1,0)代入y=x2﹣4x+m,求出m的值,將點A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點,設(shè)A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個不等的實數(shù)根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點睛】此題考查拋物線與坐標軸的交點,解題關(guān)鍵在于將已知點代入.二、填空題(本大題共6個小題,每小題3分,共18分)11、x1【解析】分析:直接利用冪的乘方運算法則計算得出答案.詳解:(x4)2=x4×2=x1.故答案為x1.點睛:本題主要考查了冪的乘方運算,正確掌握運算法則是解題的關(guān)鍵.12、x>﹣1.【解析】
一次函數(shù)y=kx+b的圖象在x軸下方時,y<0,再根據(jù)圖象寫出解集即可.【詳解】當不等式kx+b<0時,一次函數(shù)y=kx+b的圖象在x軸下方,因此x>﹣1.故答案為:x>﹣1.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b(k≠0)的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b(k≠0)在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.13、【解析】
根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標,由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【詳解】拋物線的對稱軸為x=-.∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,∴點C的橫坐標為-1.∵四邊形ABCD為菱形,∴AB=BC=AD=1,∴點D的坐標為(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD?OB=1×4=3.故答案為3.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結(jié)合勾股定理求出AD=1、OB=4是解題的關(guān)鍵.14、圓形【解析】
根據(jù)竹籬笆的長度可知所圍成的正方形的邊長,進而可計算出所圍成的正方形的面積;根據(jù)圓的周長公式,可知所圍成的圓的半徑,進而將圓的面積計算出來,兩者進行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設(shè)正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.【點睛】此題主要考查實數(shù)的大小的比較在實際生活中的應(yīng)用,所以學生在學這一部分時一定要聯(lián)系實際,不能死學.15、1【解析】分析:設(shè)∠AEF=n°,由題意nπ×2詳解:設(shè)∠AEF=n°,由題意nπ×2∴∠AEF=120°,∴∠FED=60°,∵四邊形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=12∴BC=AD=2+1=1,故答案為1.點睛:本題考查切線的性質(zhì)、矩形的性質(zhì)、扇形的面積公式、直角三角形10度角性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.16、【解析】
根據(jù)cos∠AMC,設(shè),,由勾股定理求出AC的長度,根據(jù)中線表達出BC即可求解.【詳解】解:∵cos∠AMC,,設(shè),,∴在Rt△ACM中,∵AM是BC邊上的中線,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案為:.【點睛】本題考查了銳角三角函數(shù)值的求解問題,解題的關(guān)鍵是熟記銳角三角函數(shù)的定義.三、解答題(共8題,共72分)17、-1.【解析】
根據(jù)分式的加法和除法可以化簡題目中的式子,然后在、2、3中選擇一個使得原分式有意義的值代入化簡后的式子即可解答本題.【詳解】,當時,原式.故答案為:-1.【點睛】本題考查分式的化簡求值,解答本題的關(guān)鍵是明確分式化簡求值的方法.18、(1)﹣1+3;(2)30°.【解析】
(1)根據(jù)零指數(shù)冪、絕對值、二次根式的性質(zhì)求出每一部分的值,代入求出即可;(2)根據(jù)平行線的性質(zhì)可得∠EDC=∠B=,根據(jù)三角形內(nèi)角和定理即可求解;【詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點D,E分別是邊BC,AC的中點,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【點睛】(1)主要考查零指數(shù)冪、絕對值、二次根式的性質(zhì);(2)考查平行線的性質(zhì)和三角形內(nèi)角和定理.19、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)最多可以購進1筒甲種羽毛球.【解析】
(1)設(shè)該網(wǎng)店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據(jù)“甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,購買了2筒甲種羽毛球和3筒乙種羽毛球共花費255元”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,根據(jù)總價=單價×數(shù)量結(jié)合總費用不超過2550元,即可得出關(guān)于m的一元一次不等式,解之取其最大值即可得出結(jié)論.【詳解】(1)設(shè)該網(wǎng)店甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,依題意,得:,解得:.答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元.(2)設(shè)購進甲種羽毛球m筒,則購進乙種羽毛球(50﹣m)筒,依題意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以購進1筒甲種羽毛球.【點睛】本題考查了二元一次方程組的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關(guān)系,正確列出一元一次不等式.20、(1)12;(2)1【解析】
(1)根據(jù)四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據(jù)樹狀圖即可得到共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根據(jù)待定系數(shù)法即可求出反比例函數(shù)和一次函數(shù)的表達式.詳解:(1)∵,點A(5,2),點B(2,3),
∴
又∵點C在y軸負半軸,點D在第二象限,
∴點C的坐標為(2,-1),點D的坐標為(-1,3).
∵點在反比例函數(shù)y=的圖象上,
∴
∴反比例函數(shù)的表達式為
將A(5,2)、B(2,-1)代入y=kx+b,
,解得:∴一次函數(shù)的表達式為.
(1)將代入,整理得:
∵
∴一次函數(shù)圖象與反比例函數(shù)圖象無交點.
觀察圖形,可知:當x<2時,反比例函數(shù)圖象在一次函數(shù)圖象上方,
∴不等式>kx+b的解集為x<2.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.22、(1)詳見解析;(2)詳見解析;(3)①α+β=90°;②成立,理由詳見解析.【解析】
(1)作OH⊥AB于H,根據(jù)線段垂直平分線的性質(zhì)得到OD=OA,OB=OC,證明△OCE≌△OBH,根據(jù)全等三角形的性質(zhì)證明;(2)證明△OCD≌△OBA,得到AB=CD,根據(jù)直角三角形的性質(zhì)得到OE=CD,證明即可;(3)①根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;②延長OE至F,是EF=OE,連接FD、FC,根據(jù)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)證明.【詳解】(1)作OH⊥AB于H,∵AD、BC的垂直平分線相交于點O,∴OD=OA,OB=OC,∵△ABO是等邊三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是邊CD的中線,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是邊CD的中線,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建材加盟招商合同范例
- 收購衛(wèi)浴產(chǎn)品合同范例
- 個人向個人借款合同范例
- 線管安裝合同范例
- 羅湖區(qū)吊車出租合同范例
- 2025未簽訂勞動合同離職后公司不發(fā)工資怎么辦
- 海鮮運輸售賣合同范例
- 代收賬款合同范例
- 網(wǎng)布出口合同范例
- 水泵修理合同范例
- 2024年云南中考歷史試卷試題答案解析及備考指導(dǎo)課件(深度解讀)
- 工程電磁場(山東聯(lián)盟)智慧樹知到期末考試答案章節(jié)答案2024年山東航空學院
- 提高護理文書書寫規(guī)范率PDCA
- 汽車電器DFMEA-空調(diào)冷暖裝置
- 國開可編程控制器應(yīng)用形考實訓(xùn)任務(wù)二
- 生命健康教育智慧樹知到期末考試答案章節(jié)答案2024年溫州醫(yī)科大學
- 全國養(yǎng)老護理職業(yè)技能大賽養(yǎng)老護理員賽項考試題庫-下(判斷題)
- 《湖北省竹山縣四棵樹釩礦 礦產(chǎn)資源綜合開發(fā)利用及生態(tài)復(fù)綠方案》
- 胸痛中心關(guān)鍵質(zhì)控指標及質(zhì)量改進計劃
- 2024年西藏自治區(qū)中考地理真題(解析版)
- 2024年中考作文十二大高頻熱點主題4-青春夢想(素材)
評論
0/150
提交評論