湖北省武漢市武珞路中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
湖北省武漢市武珞路中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
湖北省武漢市武珞路中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
湖北省武漢市武珞路中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
湖北省武漢市武珞路中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省武漢市武珞路中學(xué)2024屆中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列幾何體是由4個相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.2.已知a為整數(shù),且<a<,則a等于A.1 B.2 C.3 D.43.若實數(shù)m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<24.如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=2x上,第二象限的點B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.225.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.16.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學(xué)記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1057.規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論:①方程x2+2x﹣8=0是倍根方程;②若關(guān)于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關(guān)于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標(biāo)是(2,0)和(4,0);④若點(m,n)在反比例函數(shù)y=的圖象上,則關(guān)于x的方程mx2+5x+n=0是倍根方程.上述結(jié)論中正確的有(

)A.①② B.③④ C.②③ D.②④8.安徽省2010年末森林面積為3804.2千公頃,用科學(xué)記數(shù)法表示3804.2千正確的是()A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×1059.若關(guān)于x的一元一次不等式組無解,則a的取值范圍是()A.a(chǎn)≥3 B.a(chǎn)>3 C.a(chǎn)≤3 D.a(chǎn)<310.cos30°的相反數(shù)是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB是⊙O的弦,點C在過點B的切線上,且OC⊥OA,OC交AB于點P,已知∠OAB=22°,則∠OCB=__________.12.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.13.在函數(shù)y=x-1的表達(dá)式中,自變量x的取值范圍是.14.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數(shù)為()A.144° B.84° C.74° D.54°15.如圖,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.16.如果點、是二次函數(shù)是常數(shù)圖象上的兩點,那么______填“”、“”或“”三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長.18.(8分)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。求證:方程恒有兩個不相等的實數(shù)根;若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。19.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.20.(8分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.21.(8分)地球環(huán)境問題已經(jīng)成為我們?nèi)找骊P(guān)注的問題.學(xué)校為了普及生態(tài)環(huán)保知識,提高學(xué)生生態(tài)環(huán)境保護(hù)意識,舉辦了“我參與,我環(huán)?!钡闹R競賽.以下是從初一、初二兩個年級隨機(jī)抽取20名同學(xué)的測試成績進(jìn)行調(diào)查分析,成績?nèi)缦拢撼跻唬?688936578948968955089888989779487889291初二:7497968998746976727899729776997499739874(1)根據(jù)上面的數(shù)據(jù),將下列表格補充完整;整理、描述數(shù)據(jù):成績x人數(shù)班級初一1236初二011018(說明:成績90分及以上為優(yōu)秀,80~90分為良好,60~80分為合格,60分以下為不合格)分析數(shù)據(jù):年級平均數(shù)中位數(shù)眾數(shù)初一8488.5初二84.274(2)得出結(jié)論:你認(rèn)為哪個年級掌握生態(tài)環(huán)保知識水平較好并說明理由.(至少從兩個不同的角度說明推斷的合理性).22.(10分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE,OD.(1)如圖①,求∠ODE的大??;(2)如圖②,連接OC交DE于點F,若OF=CF,求∠A的大?。?3.(12分)某高中學(xué)校為高一新生設(shè)計的學(xué)生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長?(材質(zhì)及其厚度等暫忽略不計).24.先化簡,然后從﹣1,0,2中選一個合適的x的值,代入求值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項C左視圖與俯視圖都是,故選C.2、B【解析】

直接利用,接近的整數(shù)是1,進(jìn)而得出答案.【詳解】∵a為整數(shù),且<a<,∴a=1.故選:.【點睛】考查了估算無理數(shù)大小,正確得出無理數(shù)接近的有理數(shù)是解題關(guān)鍵.3、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當(dāng)m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標(biāo)大于-2,當(dāng)m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標(biāo)小于-1,∴-2<m<-1.故選A.考點:1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.4、C【解析】試題分析:作AC⊥x軸于點C,作BD⊥x軸于點D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點:1.相似三角形的判定與性質(zhì);2.反比例函數(shù)圖象上點的坐標(biāo)特征.5、D【解析】

過A作AH∥CD交BC于H,根據(jù)題意得到∠BAE=90°,根據(jù)勾股定理計算即可.【詳解】∵S2=48,∴BC=4,過A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.【點睛】本題考查了勾股定理,正方形的性質(zhì),平行四邊形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.6、B【解析】

科學(xué)計數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學(xué)計數(shù)法表示較大的數(shù),屬于基礎(chǔ)題型.理解科學(xué)計數(shù)法的表示方法是解題的關(guān)鍵.7、C【解析】分析:①通過解方程得到該方程的根,結(jié)合“倍根方程”的定義進(jìn)行判斷;②設(shè)=2,得到?=2=2,得到當(dāng)=1時,=2,當(dāng)=-1時,=-2,于是得到結(jié)論;③根據(jù)“倍根方程”的定義即可得到結(jié)論;④若點(m,n)在反比例函數(shù)y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結(jié)論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關(guān)于x的方程+ax+2=0是倍根方程,∴設(shè)=2,∴?=2=2,∴=±1,當(dāng)=1時,=2,當(dāng)=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關(guān)于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標(biāo)是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數(shù)y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關(guān)于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,根與系數(shù)的關(guān)系,正確的理解倍根方程的定義是解題的關(guān)鍵.8、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.【詳解】∵3804.2千=3804200,∴3804200=3.8042×106;故選:C.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、A【解析】

先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.10、C【解析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【點睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個特殊角的三角函數(shù)值以及相反數(shù)的概念.二、填空題(本大題共6個小題,每小題3分,共18分)11、44°【解析】

首先連接OB,由點C在過點B的切線上,且OC⊥OA,根據(jù)等角的余角相等,易證得∠CBP=∠CPB,利用等腰三角形的性質(zhì)解答即可.【詳解】連接OB,∵BC是⊙O的切線,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案為44°【點睛】此題考查了切線的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.12、2【解析】

把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出二次函數(shù)圖象上的點的坐標(biāo)滿足的關(guān)系式.13、x≥1.【解析】

根據(jù)被開方數(shù)大于等于0列式計算即可得解.【詳解】根據(jù)題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數(shù)自變量的取值范圍,知識點為:二次根式的被開方數(shù)是非負(fù)數(shù).14、B【解析】正五邊形的內(nèi)角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內(nèi)角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.15、3:2;【解析】

由AG//BC可得△AFG與△BFD相似,△AEG與△CED相似,根據(jù)相似比求解.【詳解】假設(shè):AF=3x,BF=5x,∵△AFG與△BFD相似∴AG=3y,BD=5y

由題意BC:CD=3:2則CD=2y

∵△AEG與△CED相似∴AE:EC=AG:DC=3:2.【點睛】本題考查的是相似三角形,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.16、【解析】

根據(jù)二次函數(shù)解析式可知函數(shù)圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側(cè)的圖象上;接下來,結(jié)合二次函數(shù)的性質(zhì)可判斷對稱軸左側(cè)圖象的增減性,【詳解】解:二次函數(shù)的函數(shù)圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側(cè)y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點睛】本題考查了二次函數(shù)的圖像和數(shù)形結(jié)合的數(shù)學(xué)思想.三、解答題(共8題,共72分)17、8+6.【解析】

如圖作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解決問題;【詳解】解:如圖作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,【點睛】本題考查解直角三角形,銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.18、(1)見詳解;(2)4+或4+.【解析】

(1)根據(jù)關(guān)于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結(jié)論.(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關(guān)系求得方程的另一根.分類討論:①當(dāng)該直角三角形的兩直角邊是2、3時,②當(dāng)該直角三角形的直角邊和斜邊分別是2、3時,由勾股定理求出得該直角三角形的另一邊,再根據(jù)三角形的周長公式進(jìn)行計算.【詳解】解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4>0,即△>0.∴關(guān)于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根.(2)∵此方程的一個根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,則方程的另一根為:m+2-1=2+1=3.①當(dāng)該直角三角形的兩直角邊是1、3時,由勾股定理得斜邊的長度為,該直角三角形的周長為1+3+=4+.②當(dāng)該直角三角形的直角邊和斜邊分別是1、3時,由勾股定理得該直角三角形的另一直角邊為;則該直角三角形的周長為1+3+=4+.19、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì)等,綜合性比較強.20、見解析【解析】

根據(jù)CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應(yīng)邊相等即可.【詳解】解:∵CE∥DF

∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,

∴AE=FB.【點睛】本題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì);熟練掌握平行線的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.21、(1)1,2,19;(2)初一年級掌握生態(tài)環(huán)保知識水平較好.【解析】

(1)根據(jù)初一、初二同學(xué)的測試成績以及眾數(shù)與中位數(shù)的定義即可完成表格;(2)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答.【詳解】(1)補全表格如下:整理、描述數(shù)據(jù):初一成績x滿足10≤x≤19的有:1119191119191711,共1個.故答案為:1.分析數(shù)據(jù):在761193657194196195501911191929417119291中,19出現(xiàn)的次數(shù)最多,故眾數(shù)為19;把初二的抽查成績從小到大排列為:6972727374747474767671199697979191999999,第10個數(shù)為76,第11個數(shù)為71,故中位數(shù)為:(76+71)÷2=2.故答案為:19,2.(2)初一年級掌握生態(tài)環(huán)保知識水平較好.因為兩個年級的平均數(shù)相差不大,但是初一年級同學(xué)的中位數(shù)是11.5,眾數(shù)是19,初二年級同學(xué)的中位數(shù)是2,眾數(shù)是74,即初一年級同學(xué)的中位數(shù)與眾數(shù)明顯高于初二年級同學(xué)的成績,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論