江西省南昌市高安中學2024屆高三下學期第六次檢測數(shù)學試卷含解析_第1頁
江西省南昌市高安中學2024屆高三下學期第六次檢測數(shù)學試卷含解析_第2頁
江西省南昌市高安中學2024屆高三下學期第六次檢測數(shù)學試卷含解析_第3頁
江西省南昌市高安中學2024屆高三下學期第六次檢測數(shù)學試卷含解析_第4頁
江西省南昌市高安中學2024屆高三下學期第六次檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江西省南昌市高安中學2024屆高三下學期第六次檢測數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則與的夾角為()A. B. C. D.2.已知函數(shù),則()A.1 B.2 C.3 D.43.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.84.復數(shù)的虛部是()A. B. C. D.5.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.6.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.7.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.9608.定義運算,則函數(shù)的圖象是().A. B.C. D.9.已知的面積是,,,則()A.5 B.或1 C.5或1 D.10.若數(shù)列滿足且,則使的的值為()A. B. C. D.11.設命題p:>1,n2>2n,則p為()A. B.C. D.12.過拋物線()的焦點且傾斜角為的直線交拋物線于兩點.,且在第一象限,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設滿足約束條件,則的取值范圍是______.14.設是公差不為0的等差數(shù)列的前項和,且,則______.15.已知隨機變量服從正態(tài)分布,,則__________.16.過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線交于點M,若,則l的斜率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.18.(12分)已知函數(shù),它的導函數(shù)為.(1)當時,求的零點;(2)當時,證明:.19.(12分)如圖,在正四棱錐中,底面正方形的對角線交于點且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大?。?0.(12分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.21.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.22.(10分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由已知向量的坐標,利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.2、C【解析】

結(jié)合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎題.3、B【解析】

利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.4、C【解析】因為,所以的虛部是,故選C.5、D【解析】

設等比數(shù)列的公比為q,,運用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運算能力,屬于基礎題.6、C【解析】

根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.7、B【解析】

先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.8、A【解析】

由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.9、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.10、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設可得,則,應選答案C.11、C【解析】根據(jù)命題的否定,可以寫出:,所以選C.12、C【解析】

作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準線:,作,;,設,故,,.故選:C【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出可行域,將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或,分別計算出與,再由不等式的簡單性質(zhì)即可求得答案.【詳解】作出滿足約束條件的可行域,顯然當時,z=0;當時將目標函數(shù)整理為可視為可行解與的斜率,則由圖可知或顯然,聯(lián)立,所以則或,故或綜上所述,故答案為:【點睛】本題考查分式型目標函數(shù)的線性規(guī)劃問題,屬于簡單題.14、18【解析】

先由,可得,再結(jié)合等差數(shù)列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數(shù)列基本量的運算,重點考查了等差數(shù)列的前項和公式,屬基礎題.15、0.22.【解析】

正態(tài)曲線關(guān)于x=μ對稱,根據(jù)對稱性以及概率和為1求解即可。【詳解】【點睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎題.16、【解析】

分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,根據(jù)拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,由拋物線的定義知,,,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據(jù)已知條件做出輔助線利用拋物線定義和幾何關(guān)系即可求解,屬于較易題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.18、(1)見解析;(2)證明見解析.【解析】

當時,求函數(shù)的導數(shù),判斷導函數(shù)的單調(diào)性,計算即為導函數(shù)的零點;

當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點睛】本題主要考查導數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應用.19、(1);(2).【解析】

(1)以分別為軸,軸,軸,建立空間直角坐標系,設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對角線交于點所以平面取的中點的中點所以兩兩垂直,故以點為坐標原點,以分別為軸,軸,軸,建立空間直角坐標系.設底面正方形邊長為因為所以所以,所以,設平面的法向量是,因為,,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設平面的法向量是,因為,,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點睛】本題主要考查了建立平面直角坐標系求解線面夾角以及二面角的問題,屬于中檔題.20、(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設:,將其與曲線的方程聯(lián)立,消元并整理得,設,,則可得,,由求出,將直線方程與聯(lián)立,得,求得,計算,設.顯然,構(gòu)造,由導數(shù)的知識求得其最小值,同時可得直線的方程.【詳解】(1)設,則,即整理得(2)設:,將其與曲線的方程聯(lián)立,得即設,,則,將直線:與聯(lián)立,得∴∴設.顯然構(gòu)造在上恒成立所以在上單調(diào)遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問題中常采用“設而不求”的思想方法,即設交點坐標為,設直線方程,直線方程與橢圓方程聯(lián)立并消元,然后用韋達定理得(或),把這個代入其他條件變形計算化簡得出結(jié)論,本題屬于難題,對學生的邏輯推理、運算求解能力有一定的要求.21、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.22、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)取中點,連結(jié)、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點,、、所在直線分別為,,軸,建立空間直角坐標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論