![2024屆湖南省雙牌縣中考數(shù)學(xué)模擬試題含解析_第1頁](http://file4.renrendoc.com/view5/M01/36/37/wKhkGGZBVcWAIql7AAGkRDsKZo4837.jpg)
![2024屆湖南省雙牌縣中考數(shù)學(xué)模擬試題含解析_第2頁](http://file4.renrendoc.com/view5/M01/36/37/wKhkGGZBVcWAIql7AAGkRDsKZo48372.jpg)
![2024屆湖南省雙牌縣中考數(shù)學(xué)模擬試題含解析_第3頁](http://file4.renrendoc.com/view5/M01/36/37/wKhkGGZBVcWAIql7AAGkRDsKZo48373.jpg)
![2024屆湖南省雙牌縣中考數(shù)學(xué)模擬試題含解析_第4頁](http://file4.renrendoc.com/view5/M01/36/37/wKhkGGZBVcWAIql7AAGkRDsKZo48374.jpg)
![2024屆湖南省雙牌縣中考數(shù)學(xué)模擬試題含解析_第5頁](http://file4.renrendoc.com/view5/M01/36/37/wKhkGGZBVcWAIql7AAGkRDsKZo48375.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖南省雙牌縣中考數(shù)學(xué)模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.2.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為23.如圖,已知射線OM,以O(shè)為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數(shù)是()A.90° B.60° C.45° D.30°4.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.55.十九大報告指出,我國目前經(jīng)濟保持了中高速增長,在世界主要國家中名列前茅,國內(nèi)生產(chǎn)總值從54萬億元增長80萬億元,穩(wěn)居世界第二,其中80萬億用科學(xué)記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10136.解分式方程時,去分母后變形為A. B.C. D.7.?dāng)?shù)軸上分別有A、B、C三個點,對應(yīng)的實數(shù)分別為a、b、c且滿足,|a|>|c|,b?c<0,則原點的位置()A.點A的左側(cè) B.點A點B之間C.點B點C之間 D.點C的右側(cè)8.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是()A. B.C. D.9.下列圖形是我國國產(chǎn)品牌汽車的標(biāo)識,在這些汽車標(biāo)識中,是中心對稱圖形的是()A. B. C. D.10.已知兩組數(shù)據(jù),2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設(shè)AE,BF交于點G,連接DG,則DG的最小值為_______.12.如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉(zhuǎn)至△A′B′C,使得點A′恰好落在AB上,則旋轉(zhuǎn)角度為_____.13.如圖,與是以點為位似中心的位似圖形,相似比為,,,若點的坐標(biāo)是,則點的坐標(biāo)是__________.14.如圖,點A的坐標(biāo)是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數(shù)的圖象經(jīng)過點B,則k的值是_____.15.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關(guān)于對角線AC對稱,若DM=1,則tan∠ADN=.16.已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.17.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________三、解答題(共7小題,滿分69分)18.(10分)如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當(dāng)點P從點A運動到點B時,點O也隨之運動,求點O經(jīng)過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.19.(5分)在平面直角坐標(biāo)系xOy中有不重合的兩個點與.若Q、P為某個直角三角形的兩個銳角頂點,當(dāng)該直角三角形的兩條直角邊分別與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“直距”記做,特別地,當(dāng)PQ與某條坐標(biāo)軸平行(或重合)時,線段PQ的長即為點Q與點P之間的“直距”.例如下圖中,點,點,此時點Q與點P之間的“直距”.(1)①已知O為坐標(biāo)原點,點,,則_________,_________;②點C在直線上,求出的最小值;(2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線上一動點.直接寫出點E與點F之間“直距”的最小值.20.(8分)如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點.(1)求一次函數(shù)和二次函數(shù)的解析式;(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點C,連接AC,BC,求△ABC的面積.21.(10分)先化簡,再求代數(shù)式()÷的值,其中x=sin60°,y=tan30°.22.(10分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點E,過點E作⊙O的切線交AB于點F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.23.(12分)某高中進行“選科走班”教學(xué)改革,語文、數(shù)學(xué)、英語三門為必修學(xué)科,另外還需從物理、化學(xué)、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學(xué)科中任選三門,現(xiàn)對該校某班選科情況進行調(diào)查,對調(diào)查結(jié)果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.請根據(jù)以上信息,完成下列問題:該班共有學(xué)生人;請將條形統(tǒng)計圖補充完整;該班某同學(xué)物理成績特別優(yōu)異,已經(jīng)從選修學(xué)科中選定物理,還需從余下選修學(xué)科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學(xué)恰好選中化學(xué)、歷史兩科的概率.24.(14分)(1)計算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化簡,再求值:(x﹣1)÷(﹣1),其中x為方程x2+3x+2=0的根.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長度問題一般需用到勾股定理來解決,常作垂線2、A【解析】
根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學(xué)生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、B【解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據(jù)等邊三角形的性質(zhì),可求得∠AOB的度數(shù).【詳解】連接AB,根據(jù)題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握等邊三角形的判定與性質(zhì).4、B【解析】
解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.5、B【解析】80萬億用科學(xué)記數(shù)法表示為8×1.故選B.點睛:本題考查了科學(xué)計數(shù)法,科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).6、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.7、C【解析】分析:根據(jù)題中所給條件結(jié)合A、B、C三點的相對位置進行分析判斷即可.詳解:A選項中,若原點在點A的左側(cè),則,這與已知不符,故不能選A;B選項中,若原點在A、B之間,則b>0,c>0,這與b·c<0不符,故不能選B;C選項中,若原點在B、C之間,則且b·c<0,與已知條件一致,故可以選C;D選項中,若原點在點C右側(cè),則b<0,c<0,這與b·c<0不符,故不能選D.故選C.點睛:理解“數(shù)軸上原點右邊的點表示的數(shù)是正數(shù),原點表示的是0,原點左邊的點表示的數(shù)是負數(shù),距離原點越遠的點所表示的數(shù)的絕對值越大”是正確解答本題的關(guān)鍵.8、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關(guān)系式即可.【詳解】解:設(shè)CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當(dāng)C從D點運動到E點時,即時,.當(dāng)A從D點運動到E點時,即時,,與x之間的函數(shù)關(guān)系由函數(shù)關(guān)系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應(yīng).故選A.【點睛】本題考查的動點變化過程中面積的變化關(guān)系,重點是列出函數(shù)關(guān)系式,但需注意自變量的取值范圍.9、B【解析】由中心對稱圖形的定義:“把一個圖形繞一個點旋轉(zhuǎn)180°后,能夠與自身完全重合,這樣的圖形叫做中心對稱圖形”分析可知,上述圖形中,A、C、D都不是中心對稱圖形,只有B是中心對稱圖形.故選B.10、D【解析】
分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關(guān)鍵是熟練掌握這三種數(shù)的計算方法.二、填空題(共7小題,每小題3分,滿分21分)11、﹣1【解析】
先由圖形確定:當(dāng)O、G、D共線時,DG最??;根據(jù)正方形的性質(zhì)證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當(dāng)O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握正方形的性質(zhì)與全等三角形的判定與性質(zhì).12、60°【解析】試題解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC繞點C順時針旋轉(zhuǎn)至△A′B′C時點A′恰好落在AB上,∴AC=A′C,∴△A′AC是等邊三角形,∴∠ACA′=60°,∴旋轉(zhuǎn)角為60°.故答案為60°.13、(2,2)【解析】分析:首先解直角三角形得出A點坐標(biāo),再利用位似是特殊的相似,若兩個圖形與是以點為位似中心的位似圖形,相似比是k,上一點的坐標(biāo)是則在中,它的對應(yīng)點的坐標(biāo)是或,進而求出即可.詳解:與是以點為位似中心的位似圖形,,,若點的坐標(biāo)是,過點作交于點E.點的坐標(biāo)為:與的相似比為,點的坐標(biāo)為:即點的坐標(biāo)為:故答案為:點睛:考查位似圖形的性質(zhì),熟練掌握位似圖形的性質(zhì)是解題的關(guān)鍵.14、.【解析】
已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質(zhì)可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據(jù)勾股定理還可求出BC的長度,進而確定點B的坐標(biāo);將點B的坐標(biāo)代入反比例函數(shù)的解析式中,即可求出k的值.【詳解】過點B作BC垂直O(jiān)A于C,∵點A的坐標(biāo)是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標(biāo)是把代入,得故答案為.【點睛】考查待定系數(shù)法確定反比例函數(shù)的解析式,只需求出反比例函數(shù)圖象上一點的坐標(biāo);15、【解析】
M、N兩點關(guān)于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.
∵DM=1,
∴CM=2,
∵M、N兩點關(guān)于對角線AC對稱,
∴CN=CM=2.
∵AD∥BC,
∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質(zhì),軸對稱的性質(zhì)以及銳角三角函數(shù)的定義.16、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因為k≠0,所以k的值為﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.17、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.三、解答題(共7小題,滿分69分)18、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質(zhì)得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應(yīng)邊成比例即可求出AE的長;(2)①A、P、O、E四點共圓,即可得出結(jié)論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點O在AC上,當(dāng)P運動到點B時,O為AC(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設(shè)AP=x,則BP=4﹣x,由相似三角形的對應(yīng)邊成比例求出AE的表達式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點共圓,∴點O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點共圓,∴∠OAP=∠OEP=45°,∴點O在AC上,當(dāng)P運動到點B時,O為AC的中點,OA=12AC=2即點O經(jīng)過的路徑長為22(3)設(shè)△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵ME=MP,∴AN=PN,∴MN=12AE設(shè)AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時,AE的最大值為1,此時MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【點睛】本題考查圓、二次函數(shù)的最值等,正確地添加輔助線,根據(jù)已知證明△APE∽△BCP是解題的關(guān)鍵.19、(1)①3,1;②最小值為3;(1)【解析】
(1)①根據(jù)點Q與點P之間的“直距”的定義計算即可;②如圖3中,由題意,當(dāng)DCO為定值時,點C的軌跡是以點O為中心的正方形(如左邊圖),當(dāng)DCO=3時,該正方形的一邊與直線y=-x+3重合(如右邊圖),此時DCO定值最小,最小值為3;(1)如圖4中,平移直線y=1x+4,當(dāng)平移后的直線與⊙O在左邊相切時,設(shè)切點為E,作EF∥x軸交直線y=1x+4于F,此時DEF定值最小;【詳解】解:(1)①如圖1中,觀察圖象可知DAO=1+1=3,DBO=1,故答案為3,1.②(i)當(dāng)點C在第一象限時(),根據(jù)題意可知,為定值,設(shè)點C坐標(biāo)為,則,即此時為3;(ii)當(dāng)點C在坐標(biāo)軸上時(,),易得為3;(ⅲ)當(dāng)點C在第二象限時(),可得;(ⅳ)當(dāng)點C在第四象限時(),可得;綜上所述,當(dāng)時,取得最小值為3;(1)如解圖②,可知點F有兩種情形,即過點E分別作y軸、x軸的垂線與直線分別交于、;如解圖③,平移直線使平移后的直線與相切,平移后的直線與x軸交于點G,設(shè)直線與x軸交于點M,與y軸交于點N,觀察圖象,此時即為點E與點F之間“直距”的最小值.連接OE,易證,∴,在中由勾股定理得,∴,解得,∴.【點睛】本題考查一次函數(shù)的綜合題,點Q與點P之間的“直距”的定義,圓的有關(guān)知識,正方形的性質(zhì)等知識,解題的關(guān)鍵是理解題意,學(xué)會利用新的定義,解決問題,屬于中考壓軸題.失分原因第(1)問(1)不能根據(jù)定義找出AO、BO的“直距”分屬哪種情形;(1)不能找出點C在不同位置時,的取值情況,并找到的最小值第(1)問(1)不能根據(jù)定義正確找出點E與點F之間“直距”取最小值時點E、F的位置;(1)不能想到由相似求出GO的值20、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】
(1)根據(jù)待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式即可.(2)根據(jù)圖象以及點A,B兩點的坐標(biāo)即可求出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)連接AC、BC,設(shè)直線AB交y軸于點D,根據(jù)即可求出△ABC的面積.【詳解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分別代入y=kx+b得解得:∴y=﹣x+1;(2)根據(jù)圖象得:使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍是﹣1<x<2;(3)連接AC、BC,設(shè)直線AB交y軸于點D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,則【點睛】考查待定系數(shù)法求二次函數(shù)解析式,三角形的面積公式等,掌握待定系數(shù)法是解題的關(guān)鍵.21、【解析】
先根據(jù)分式混合運算的法則把原式進行化簡,再計算x和y的值并代入進行計算即可【詳解】原式∴原式【點睛】考查分式的混合運算,掌握運算順序是解題的關(guān)鍵.22、(1)證明見解析;(2)4.8.【解析】
(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具購銷的簡單合同范本
- 全新財務(wù)人員勞動合同
- 大樓物業(yè)管理委托合同
- 后八輪自卸車租賃合同范本
- 滬教版(上海)七年級地理第一學(xué)期祖國篇(上)4.3《長江》聽課評課記錄
- 股東合作協(xié)議合同模板
- 加盟合同協(xié)議書范本
- 攪拌站礦粉購銷簡易合同
- 《研究性學(xué)習(xí)》課程實施方案
- 合同書樣本范文電子版
- 藥用植物種植制度和土壤耕作技術(shù)
- 《火力發(fā)電企業(yè)設(shè)備點檢定修管理導(dǎo)則》
- 重慶市渝北區(qū)2024年八年級下冊數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 保安服務(wù)項目信息反饋溝通機制
- 《團隊介紹模板》課件
- 常用中醫(yī)適宜技術(shù)目錄
- 沖壓模具價格估算方法
- 運動技能學(xué)習(xí)與控制課件第十一章運動技能的練習(xí)
- 蟲洞書簡全套8本
- 2023年《反電信網(wǎng)絡(luò)詐騙法》專題普法宣傳
- 小學(xué)數(shù)學(xué)五年級上、下冊口算題大全
評論
0/150
提交評論