江蘇省南京秦淮區(qū)五校聯(lián)考2024年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
江蘇省南京秦淮區(qū)五校聯(lián)考2024年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
江蘇省南京秦淮區(qū)五校聯(lián)考2024年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
江蘇省南京秦淮區(qū)五校聯(lián)考2024年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
江蘇省南京秦淮區(qū)五校聯(lián)考2024年初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京秦淮區(qū)五校聯(lián)考2024年初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.小王拋一枚質地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.2.內角和為540°的多邊形是()A. B. C. D.3.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.4.在一次男子馬拉松長跑比賽中,隨機抽取了10名選手,記錄他們的成績(所用的時間)如下:選手12345678910時間(min)129136140145146148154158165175由此所得的以下推斷不正確的是()A.這組樣本數(shù)據(jù)的平均數(shù)超過130B.這組樣本數(shù)據(jù)的中位數(shù)是147C.在這次比賽中,估計成績?yōu)?30min的選手的成績會比平均成績差D.在這次比賽中,估計成績?yōu)?42min的選手,會比一半以上的選手成績要好5.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數(shù)為()A.30° B.40° C.50° D.60°6.在下列實數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣17.方程x-2x-3A.x=﹣1 B.x=1 C.x=2 D.x=38.如圖所示的幾何體的主視圖是()A. B. C. D.9.我國古代數(shù)學著作《九章算術》中,將底面是直角三角形,且側棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個小正方形的邊長均為1),則該“塹堵”的側面積為()A.16+16 B.16+8 C.24+16 D.4+410.用加減法解方程組時,如果消去y,最簡捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣① D.②×2+①二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB,AC分別為⊙O的內接正六邊形,內接正方形的一邊,BC是圓內接n邊形的一邊,則n等于_____.12.受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展.預計達州市2018年快遞業(yè)務量將達到5.5億件,數(shù)據(jù)5.5億用科學記數(shù)法表示為_____.13.如圖,經過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.14.如圖,垂直于x軸的直線AB分別與拋物線C1:y=x2(x≥0)和拋物線C2:y=(x≥0)交于A,B兩點,過點A作CD∥x軸分別與y軸和拋物線C2交于點C、D,過點B作EF∥x軸分別與y軸和拋物線C1交于點E、F,則的值為_____.15.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數(shù)根,則a的取值范圍為________.16.化簡:=.三、解答題(共8題,共72分)17.(8分)定義:如果把一條拋物線繞它的頂點旋轉180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達式;(2)若拋物線y=x2﹣2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P點的坐標;若不存在,說明理由.18.(8分)2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風景線.大橋主體工程隧道的東、西兩端各設置了一個海中人工島,來銜接橋梁和海地隧道,西人工島上的點和東人工島上的點間的距離約為5.6千米,點是與西人工島相連的大橋上的一點,,,在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達點時觀測兩個人工島,分別測得,與觀光船航向的夾角,,求此時觀光船到大橋段的距離的長(參考數(shù)據(jù):,,,,,).19.(8分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數(shù).20.(8分)如圖1,在長方形ABCD中,,,點P從A出發(fā),沿的路線運動,到D停止;點Q從D點出發(fā),沿路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵搿?P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?21.(8分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.22.(10分)已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線交于點,∥,且FG=EF.(1)求證:四邊形是菱形;(2)聯(lián)結AE,又知AC⊥ED,求證:.23.(12分)如圖,?ABCD的邊CD為斜邊向內作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點E在平行四邊形內部,連接AE、BE,求∠AEB的度數(shù).24.如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

直接利用概率的意義分析得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點睛】此題主要考查了概率的意義,明確概率的意義是解答的關鍵.2、C【解析】試題分析:設它是n邊形,根據(jù)題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點:多邊形內角與外角.3、C【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.4、C【解析】分析:要求平均數(shù)只要求出數(shù)據(jù)之和再除以總個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可求解.詳解:平均數(shù)=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故這組樣本數(shù)據(jù)的平均數(shù)超過130,A正確,C錯誤;因為表中是按從小到大的順序排列的,一共10名選手,中位數(shù)為第五位和第六位的平均數(shù),故中位數(shù)是(146+148)÷2=147(min),故B正確,D正確.故選C.點睛:本題考查的是平均數(shù)和中位數(shù)的定義.要注意,當所給數(shù)據(jù)有單位時,所求得的平均數(shù)和中位數(shù)與原數(shù)據(jù)的單位相同,不要漏單位.5、D【解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.6、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.7、B【解析】

觀察可得最簡公分母是(x-3)(x+1),方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解.【詳解】方程的兩邊同乘(x?3)(x+1),得(x?2)(x+1)=x(x?3),x2解得x=1.檢驗:把x=1代入(x?3)(x+1)=-4≠0.∴原方程的解為:x=1.故選B.【點睛】本題考查的知識點是解分式方程,解題關鍵是注意解得的解要進行檢驗.8、A【解析】

找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.9、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側面,另外兩個側面全等,是長×高=×4=,所以側面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側面積,畫出該圖的立體圖形是解決本題的關鍵.10、D【解析】試題解析:用加減法解方程組時,如果消去y,最簡捷的方法是②×2+①,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、12【解析】連接AO,BO,CO,如圖所示:∵AB、AC分別為⊙O的內接正六邊形、內接正方形的一邊,∴∠AOB==60°,∠AOC==90°,∴∠BOC=30°,∴n==12,故答案為12.12、5.5×1.【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.13、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.14、【解析】

根據(jù)二次函數(shù)的圖象和性質結合三角形面積公式求解.【詳解】解:設點橫坐標為,則點縱坐標為,點B的縱坐標為,∵BE∥x軸,∴點F縱坐標為,∵點F是拋物線上的點,∴點F橫坐標為,∵軸,∴點D縱坐標為,∵點D是拋物線上的點,∴點D橫坐標為,,故答案為.【點睛】此題重點考查學生對二次函數(shù)的圖象和性質的應用能力,熟練掌握二次函數(shù)的圖象和性質是解題的關鍵.15、a≤且a≠1.【解析】

根據(jù)一元二次方程有實數(shù)根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據(jù)題意列出關于a的不等式組是解答此題的關鍵.16、2【解析】

根據(jù)算術平方根的定義,求數(shù)a的算術平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術平方根,特別地,規(guī)定0的算術平方根是0.【詳解】∵22=4,∴=2.【點睛】本題考查求算術平方根,熟記定義是關鍵.三、解答題(共8題,共72分)17、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】

(1)當拋物線繞其頂點旋轉180°后,拋物線的頂點坐標不變,只是開口方向相反,則可根據(jù)頂點式寫出旋轉后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點坐標C、C′,由點的坐標可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當AC為對角線時,由中點坐標可知點P不存在,當AC為邊時,分兩種情況可求得點P的坐標.【詳解】(1)拋物線y=x2-2x化為頂點式為y=(x-1)2-1,頂點坐標為(1,-1),由于拋物線y=x2-2x繞其頂點旋轉180°后拋物線的頂點坐標不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點為D的坐標為(1,c-1),與y軸的交點C的坐標為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點C’的坐標為(0,c-2),∴CC'=c-(c-2)=2,∵點D的橫坐標為1,∴∠CDC'=90°,由對稱性質可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點C,與x軸正半軸的交點為A,令x=0,y=-3,令y=0時,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點坐標為(,?),設P(a,-a2+2a-5),∵A、C、P、Q為頂點的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實數(shù)解,∴此時滿足條件的點P不存在,若AC為平行四邊形的邊,點P在y軸右側,則AP∥CQ且AP=CQ,∵點C和點Q在y軸上,∴點P的橫坐標為3,把x=3代入“孿生拋物線”的解析式y(tǒng)=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點P在y軸左側,則AQ∥CP且AQ=CP,∴點P的橫坐標為-3,把x=-3代入“孿生拋物線”的解析式y(tǒng)=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點P1(3,-8),P2(-3,-20),在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.【點睛】本題是二次函數(shù)綜合題型,主此題主要考查了根據(jù)二次函數(shù)的圖象的變換求拋物線的解析式,解題的關鍵是求出旋轉后拋物線的頂點坐標以及確定出點P的位置,注意分情況討論.18、5.6千米【解析】

設PD的長為x千米,DA的長為y千米,在Rt△PAD中利用正切的定義得到tan18°=,即y=0.33x,同樣在Rt△PDB中得到y(tǒng)+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【詳解】設PD的長為x千米,DA的長為y千米,在Rt△PAD中,tan∠DPA=,即tan18°=,∴y=0.33x,在Rt△PDB中,tan∠DPB=,即tan53°=,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此時觀光船到大橋AC段的距離PD的長為5.6千米.【點睛】本題考查了解直角三角形的應用:根據(jù)題目已知特點選用適當銳角三角函數(shù)或邊角關系去解直角三角形,得到數(shù)學問題的答案,再轉化得到實際問題的答案.19、∠DAC=20°.【解析】

根據(jù)角平分線的定義可得∠ABC=2∠ABE,再根據(jù)直角三角形兩銳角互余求出∠BAD,然后根據(jù)∠DAC=∠BAC﹣∠BAD計算即可得解.【詳解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC邊上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【點睛】本題考查了三角形的內角和定理,角平分線的定義,準確識圖理清圖中各角度之間的關系是解題的關鍵.20、(1)6;(2);;(3)10或;【解析】

(1)根據(jù)圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數(shù)關系式都是在運動6秒的基礎上得到的,因此注意在總時間內減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分析圖象的變化與動點運動位置之間的關系.列函數(shù)關系式時,要考慮到時間x的連續(xù)性才能直接列出函數(shù)關系式.21、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據(jù)平行四邊形的性質得出四邊形ADCE是平行四邊形,根據(jù)垂直推出∠ADC=90°,根據(jù)矩形的判定得出即可;(2)①求出DC,根據(jù)勾股定理求出AD,根據(jù)矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質,等腰三角形的性質,勾股定理的應用,能綜合運用定理進行推理和計算是解答此題的關鍵,比較典型,難度適中.22、(1)見解析;(2)見解析【解析】分析:(1)由兩組對邊分別平行的四邊形是平行四邊形,得到是平行四邊形.再由平行線分線段成比例定理得到:,,=,即可得到結論;(2)連接,與交于點.由菱形的性質得到⊥,進而得到,,即有,得到△∽△,由相似三角形的性質即可得到結論.詳解:(1)∵∥∥,∴四邊形是平行四邊形.∵∥,∴.同理.得:=∵,∴.∴四邊形是菱形.(2)連接,與交于點.∵四邊形是菱形,∴⊥.得.同理.∴.又∵是公共角,∴△∽△.∴.∴.點睛:本題主要考查了菱形的判定和性質以及相似三角形的判定與性質.靈活運用菱形的判定與性質是解題的關鍵.23、135°【解析】

先證明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,設∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四邊形的對角相等得出方程,求出x+y=135°,即可得出結果.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論