2024屆安徽省合肥八中、馬鞍山二中、阜陽一中高考數(shù)學四模試卷含解析_第1頁
2024屆安徽省合肥八中、馬鞍山二中、阜陽一中高考數(shù)學四模試卷含解析_第2頁
2024屆安徽省合肥八中、馬鞍山二中、阜陽一中高考數(shù)學四模試卷含解析_第3頁
2024屆安徽省合肥八中、馬鞍山二中、阜陽一中高考數(shù)學四模試卷含解析_第4頁
2024屆安徽省合肥八中、馬鞍山二中、阜陽一中高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆安徽省合肥八中、馬鞍山二中、阜陽一中高考數(shù)學四模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù),則函數(shù)的圖像可能為()A. B. C. D.2.已知向量,,當時,()A. B. C. D.3.過直線上一點作圓的兩條切線,,,為切點,當直線,關(guān)于直線對稱時,()A. B. C. D.4.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.5.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.6.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.7.已知函數(shù)的定義域為,且,當時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.88.已知向量,,則向量與的夾角為()A. B. C. D.9.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.10.已知,,,是球的球面上四個不同的點,若,且平面平面,則球的表面積為()A. B. C. D.11.已知集合,集合,則等于()A. B.C. D.12.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路二、填空題:本題共4小題,每小題5分,共20分。13.我國古代數(shù)學名著《九章算術(shù)》對立體幾何有深入的研究,從其中一些數(shù)學用語可見,譬如“憋臑”意指四個面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網(wǎng)格紙上每個小正方形的邊長為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為__________.14.展開式中的系數(shù)為_________.15.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面16.在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數(shù)a的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積18.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.19.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.20.(12分)已知函數(shù),為的導數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.21.(12分)在平面直角坐標系中,點,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.22.(10分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.2、A【解析】

根據(jù)向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.【點睛】本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.3、C【解析】

判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.4、B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.5、A【解析】

作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當且僅當平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時運用線面角的最小性進行判定.屬于中檔題.6、B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設,則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數(shù)在恒成立問題中的應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.7、A【解析】

根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應用,屬于中檔題.8、C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.9、D【解析】

設,,作為一個基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.10、A【解析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.11、B【解析】

求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.12、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內(nèi)容進行分類討論,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】三視圖還原如下圖:,由于每個面是直角,顯然外接球球心O在AC的中點.所以,,填?!军c睛】三視圖還原,當出現(xiàn)三個尖點在一個位置時,我們常用“揪尖法”。外接球球心到各個頂點的距離相等,而直角三角形斜邊上的中點到各頂點的距離相等,所以本題的球心為AC中點。14、【解析】

變換,根據(jù)二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.15、π.【解析】

設三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.16、3【解析】

設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0),聯(lián)立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【詳解】設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(0,1),∴B的坐標為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當且僅當,即t時,△ABC的面積S有最大值為.解之得a=3或a.∵a時,t2不符合題意,∴a=3.故答案為:3.【點睛】本題考查了橢圓內(nèi)三角形面積的最值問題,意在考查學生的計算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)先把參數(shù)方程化成普通方程,再利用極坐標的公式把普通方程化成極坐標方程;(2)先利用極坐標求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標方程為:,因為曲線的普通方程為:,曲線的極坐標方程為;(2)由(1)得:點的極坐標為,點的極坐標為,,點到射線的距離為的面積為.【點睛】本題考查普通方程、參數(shù)方程與極坐標方程之間的互化,同時也考查了利用極坐標方程求解面積問題,考查計算能力,屬于中等題.18、(1)見解析;(2).【解析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標方程;(2)設直線的參數(shù)方程為(為參數(shù)),代入,利用韋達定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結(jié)果.試題解析:(1)曲線的普通方程為,曲線的直角坐標方程為;(2)設直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個交點,因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即19、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】

(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導數(shù)求得函數(shù)最值即可;(2),導出導函數(shù),問題轉(zhuǎn)化為在上有解.再用導數(shù)研究的性質(zhì)可得.【詳解】解:(1)因為當時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當時,,設,,當時,,則在上單調(diào)遞增,當時,,則在上單調(diào)遞減,所以當時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設,則,當時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當時,,,所以,曲線在點處的切線與軸垂直等價于方程在上有實數(shù)解.而,即方程無實數(shù)解.故不存在實數(shù),使曲線在點處的切線與軸垂直.【點睛】本題考查不等式恒成立,考查用導數(shù)的幾何意義,由導數(shù)幾何把問題進行轉(zhuǎn)化是解題關(guān)鍵.本題屬于困難題.20、(1)見解析;(2).【解析】

(1)對求導,令,求導研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉(zhuǎn)化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因為,,所以,存在使得,即.所以,當時,為減函數(shù),當時,為增函數(shù),故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當,即時,有兩個不同的零點,,且,即,若時,為減函數(shù),(*)若時,為增函數(shù),所以的最小值為.注意到時,,且此時,(?。┊敃r,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當時,,所以,所以由(*)知時,為減函數(shù),所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點睛】本題考查了函數(shù)與導數(shù)綜合,考查了利用導數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學運算能力,屬于較難題.21、(1);(2).【解析】

(1)在已知極坐標方程兩邊同時乘以ρ后,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論