河南省洛陽市孟津縣第二高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁
河南省洛陽市孟津縣第二高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁
河南省洛陽市孟津縣第二高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁
河南省洛陽市孟津縣第二高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁
河南省洛陽市孟津縣第二高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省洛陽市孟津縣第二高級中學(xué)2024屆高三第二次模擬考試數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的圖象上兩點,關(guān)于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.2.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.3.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.設(shè)i為數(shù)單位,為z的共軛復(fù)數(shù),若,則()A. B. C. D.5.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.6.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.7.下列函數(shù)中,在定義域上單調(diào)遞增,且值域為的是()A. B. C. D.8.若復(fù)數(shù)滿足,則()A. B. C. D.9.將函數(shù)圖象上所有點向左平移個單位長度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實數(shù)的最大值為()A. B. C. D.10.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.11.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.12.函數(shù)在的圖象大致為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績,現(xiàn)采用分層抽樣的方法在這三所學(xué)校中抽取樣本,若在學(xué)校抽取的數(shù)學(xué)成績的份數(shù)為30,則抽取的樣本容量為____________.14.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.15.對任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.16.已知,則________.(填“>”或“=”或“<”).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.18.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對任意的,恒成立,求實數(shù)的取值范圍.19.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.20.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.21.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大小(2)已知,設(shè)點是外一點,且,求平面四邊形面積的最大值.22.(10分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點且,,,.求證:平面平面以;求二面角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個公共點,可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點,關(guān)于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當(dāng)時,;當(dāng)時,,故時取得極大值,也即為最大值,當(dāng)時,;當(dāng)時,,所以滿足條件.故選:D【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.2、C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.3、A【解析】

本題根據(jù)基本不等式,結(jié)合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)時,,則當(dāng)時,有,解得,充分性成立;當(dāng)時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.4、A【解析】

由復(fù)數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.【點睛】本題考查復(fù)數(shù)的乘除法運算,考查共軛復(fù)數(shù)的概念,掌握復(fù)數(shù)的運算法則是解題關(guān)鍵.5、D【解析】

由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.6、C【解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.7、B【解析】

分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.【點睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.8、C【解析】

化簡得到,,再計算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復(fù)數(shù)的化簡,共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計算能力.9、B【解析】

根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】將函數(shù)圖象上所有點向左平移個單位長度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時,,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實數(shù)的最大值為,故選:B.【點睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.10、A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運算可以求出.詳解:由題設(shè)有,故,故選A.點睛:本題考查復(fù)數(shù)的四則運算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.11、A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計算能力,屬于中檔題.對于離心率求解問題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.12、A【解析】

因為,所以排除C、D.當(dāng)從負(fù)方向趨近于0時,,可得.故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設(shè)抽取的樣本容量為x,由已知,,解得.故答案為:【點睛】本題考查隨機(jī)抽樣中的分層抽樣,考查學(xué)生基本的運算能力,是一道容易題.14、【解析】

設(shè),由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時,取得最大值,此時,解得.15、【解析】

將代入求解即可;當(dāng)為奇數(shù)時,,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時,,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時,,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時,,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.16、【解析】

注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數(shù)式比較大小,涉及到換底公式的應(yīng)用,考查學(xué)生的數(shù)學(xué)運算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】

(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標(biāo)因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.18、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)求導(dǎo)得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設(shè),求,令,故在單調(diào)遞增,存在使得,,計算得到答案.【詳解】(Ⅰ)(),當(dāng)時,在單調(diào)遞減,在單調(diào)遞增;當(dāng)時,在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)(),即,().令(),則,令,,故在單調(diào)遞增,注意到,,于是存在使得,可知在單調(diào)遞增,在單調(diào)遞減.∴.綜上知,.【點睛】本題考查了函數(shù)的單調(diào)性,恒成立問題,意在考查學(xué)生對于導(dǎo)數(shù)知識的綜合應(yīng)用能力.19、(1)(2)【解析】

(1)當(dāng)時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時,,原不等式可化為,①當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當(dāng)且僅當(dāng),即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.20、(1)證明見解析(2)證明見解析【解析】

(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【點睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關(guān)鍵在于熟練掌握相關(guān)判定定理,找出平行關(guān)系和垂直關(guān)系證明.21、(1)(2)【解析】

(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質(zhì)求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,所以當(dāng)時有最大值【點睛】本題考查同角三角函數(shù)的基本關(guān)系,三角恒等變換公式的應(yīng)用,三角形面積公式的應(yīng)用,以及正弦函數(shù)的性質(zhì),屬于中檔題.22、證明見解析;.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論