貴州省畢節(jié)市大方縣三中2024年高三第四次模擬考試數學試卷含解析_第1頁
貴州省畢節(jié)市大方縣三中2024年高三第四次模擬考試數學試卷含解析_第2頁
貴州省畢節(jié)市大方縣三中2024年高三第四次模擬考試數學試卷含解析_第3頁
貴州省畢節(jié)市大方縣三中2024年高三第四次模擬考試數學試卷含解析_第4頁
貴州省畢節(jié)市大方縣三中2024年高三第四次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省畢節(jié)市大方縣三中2024年高三第四次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數,,其中是虛數單位,則的最大值為()A. B. C. D.2.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.63.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.54.函數的部分圖像大致為()A. B.C. D.5.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.326.已知函數的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數的取值范圍是()A. B. C. D.7.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.38.若函數函數只有1個零點,則的取值范圍是()A. B. C. D.9.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.10.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果,哥德巴赫猜想的內容是:每個大于2的偶數都可以表示為兩個素數的和,例如:,,,那么在不超過18的素數中隨機選取兩個不同的數,其和等于16的概率為()A. B. C. D.11.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.12.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.某同學周末通過拋硬幣的方式決定出去看電影還是在家學習,拋一枚硬幣兩次,若兩次都是正面朝上,就在家學習,否則出去看電影,則該同學在家學習的概率為____________.14.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.15.已知隨機變量服從正態(tài)分布,若,則_________.16.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.18.(12分)已知.(1)當時,求不等式的解集;(2)若,,證明:.19.(12分)已知,其中.(1)當時,設函數,求函數的極值.(2)若函數在區(qū)間上遞增,求的取值范圍;(3)證明:.20.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉播的時間作了一次調查,得到如圖頻數分布直方圖:(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據頻率分布直方圖補全列聯表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,求的分布列與數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,21.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數方程為(t為參數).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.22.(10分)已知,且的解集為.(1)求實數,的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由復數的幾何意義可得表示復數,對應的兩點間的距離,由兩點間距離公式即可求解.【詳解】由復數的幾何意義可得,復數對應的點為,復數對應的點為,所以,其中,故選C【點睛】本題主要考查復數的幾何意義,由復數的幾何意義,將轉化為兩復數所對應點的距離求值即可,屬于基礎題型.2、D【解析】

作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.3、C【解析】

由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.4、A【解析】

根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.5、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.6、A【解析】

可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數的增減性,結合函數圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據題意畫出函數大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數形結合思想求解函數交點問題,導數研究函數增減性,找準臨界是解題的關鍵,屬于中檔題7、A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.8、C【解析】

轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態(tài)相切時的斜率,數形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數在函數零點問題中的應用,考查了學生數形結合,轉化劃歸,數學運算的能力,屬于較難題.9、D【解析】

根據已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.10、B【解析】

先求出從不超過18的素數中隨機選取兩個不同的數的所有可能結果,然后再求出其和等于16的結果,根據等可能事件的概率公式可求.【詳解】解:不超過18的素數有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數共有,其和等于16的結果,共2種等可能的結果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數,本題不可以列舉出所有事件但可以用分步計數得到,屬于基礎題.11、D【解析】

利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.12、B【解析】

畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規(guī)劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

采用列舉法計算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學習只有1種情況,即(正,正),故該同學在家學習的概率為.故答案為:【點睛】本題考查古典概型的概率計算,考查學生的基本計算能力,是一道基礎題.14、【解析】

先由三視圖在長方體中將其還原成直觀圖,再利用球的直徑是長方體體對角線即可解決.【詳解】由三視圖知該幾何體是一個三棱錐,如圖所示長方體對角線長為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學生空間想象能力以及基本計算能力,是一道基礎題.15、0.4【解析】

因為隨機變量ζ服從正態(tài)分布,利用正態(tài)曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態(tài)分布所以正態(tài)曲線關于對稱,所.【點睛】本題考查了正態(tài)分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.16、【解析】

①根據向量數量積的坐標表示結合兩角差的正弦公式的逆用即可得解;②結合①求出,根據面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數解三角形綜合應用,涉及平面向量數量積的坐標表示,三角恒等變換,根據三角形面積公式求解三角形面積,綜合性強.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用余弦定理可求,從而得到的值.(2)利用誘導公式和正弦定理化簡題設中的邊角關系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.18、(1)(2)見證明【解析】

(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質進行證明.【詳解】(1)解:當時,不等式可化為.當時,,,所以;當時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.19、(1)極大值,無極小值;(2).(3)見解析【解析】

(1)先求導,根據導數和函數極值的關系即可求出;(2)先求導,再函數在區(qū)間上遞增,分離參數,構造函數,求出函數的最值,問題得以解決;(3)取得到,取,可得,累加和根據對數的運算性和放縮法即可證明.【詳解】解:(1)當時,設函數,則令,解得當時,,當時,所以在上單調遞增,在上單調遞減所以當時,函數取得極大值,即極大值為,無極小值;(2)因為,所以,因為在區(qū)間上遞增,所以在上恒成立,所以在區(qū)間上恒成立.當時,在區(qū)間上恒成立,當時,,設,則在區(qū)間上恒成立.所以在單調遞增,則,所以,即綜上所述.(3)由(2)可知當時,函數在區(qū)間上遞增,所以,即,取,則.所以所以【點睛】此題考查了參數的取值范圍以及恒成立的問題,以及不等式的證明,構造函數是關鍵,屬于較難題.20、(1)列聯表見解析,有把握;(2)分布列見解析,.【解析】

(1)根據頻率分布直方圖補全列聯表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關.(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數學期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關.(2)由題意知抽取的6名“冰雪迷”中有4名男職工

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論