江蘇省阜寧市重點達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第1頁
江蘇省阜寧市重點達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第2頁
江蘇省阜寧市重點達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第3頁
江蘇省阜寧市重點達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第4頁
江蘇省阜寧市重點達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省阜寧市重點達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)最后一模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標(biāo)系中,以A(-1,0),B(2,0),C(0,1)為頂點構(gòu)造平行四邊形,下列各點中不能作為平行四邊形頂點坐標(biāo)的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)2.下列計算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy3.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.34.如圖,在四邊形ABCD中,∠A=120°,∠C=80°.將△BMN沿著MN翻折,得到△FMN.若MF∥AD,F(xiàn)N∥DC,則∠F的度數(shù)為()A.70° B.80° C.90° D.100°5.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值26.某城年底已有綠化面積公頃,經(jīng)過兩年綠化,到年底增加到公頃,設(shè)綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.7.實數(shù)的相反數(shù)是()A.- B. C. D.8.一個三角形框架模型的三邊長分別為20厘米、30厘米、40厘米,木工要以一根長為60厘米的木條為一邊,做一個與模型三角形相似的三角形,那么另兩條邊的木條長度不符合條件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米9.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.10.的算術(shù)平方根是()A.9 B.±9 C.±3 D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.12.的相反數(shù)是_____.13.如圖,在邊長為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長為.14.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.15.一個不透明的口袋中有四個完全相同的小球,把它們分別標(biāo)號為,隨機(jī)取出一個小球后不放回,再隨機(jī)取出一個小球,則兩次取出的小球標(biāo)號的和等于4的概率是_____.16.函數(shù)中自變量的取值范圍是______________三、解答題(共8題,共72分)17.(8分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標(biāo);(2)當(dāng)點P的縱坐標(biāo)為2時,求點P的橫坐標(biāo);(3)當(dāng)點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標(biāo).18.(8分)如圖,是5×5正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.19.(8分)如圖,△ABC中,D是AB上一點,DE⊥AC于點E,F(xiàn)是AD的中點,F(xiàn)G⊥BC于點G,與DE交于點H,若FG=AF,AG平分∠CAB,連接GE,GD.求證:△ECG≌△GHD;20.(8分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時間計費.共享汽車:無固定租金,直接以租車時間(時)計費.如圖是兩種租車方式所需費用y1(元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達(dá)式;(2)請你幫助小麗一家選擇合算的租車方案.21.(8分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.22.(10分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.23.(12分)如圖,在△ABC中,∠ACB=90°,O是邊AC上一點,以O(shè)為圓心,以O(shè)A為半徑的圓分別交AB、AC于點E、D,在BC的延長線上取點F,使得BF=EF.(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;(2)若∠A=30°,求證:DG=DA;(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.24.在平面直角坐標(biāo)系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當(dāng)它經(jīng)過M關(guān)于坐標(biāo)軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經(jīng)過點M且與直線y=﹣x+4交點的橫坐標(biāo)為n,當(dāng)y=kx+b隨x的增大而增大時,則n取值范圍是_____.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

作出圖形,結(jié)合圖形進(jìn)行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(xiàn)(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.2、D【解析】

A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項錯誤;B.

(?2a2)3=?8a6,故本項錯誤;C.

(2a+1)(2a?1)=4a2?1,故本項錯誤;D.35x3y2÷5x2y=7xy,故本選項正確.故答案選D.【點睛】本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關(guān)鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.3、B【解析】【分析】依據(jù)點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進(jìn)而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進(jìn)而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負(fù)值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標(biāo)特征,注意反比例函數(shù)圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.4、B【解析】

首先利用平行線的性質(zhì)得出∠BMF=120°,∠FNB=80°,再利用翻折變換的性質(zhì)得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,進(jìn)而求出∠B的度數(shù)以及得出∠F的度數(shù).【詳解】∵M(jìn)F∥AD,F(xiàn)N∥DC,∠A=120°,∠C=80°,

∴∠BMF=120°,∠FNB=80°,

∵將△BMN沿MN翻折得△FMN,

∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,

∴∠F=∠B=180°-60°-40°=80°,

故選B.【點睛】主要考查了平行線的性質(zhì)以及多邊形內(nèi)角和定理以及翻折變換的性質(zhì),得出∠FMN=∠BMN,∠FNM=∠MNB是解題關(guān)鍵.5、D【解析】設(shè)拋物線與x軸的兩交點間的橫坐標(biāo)分別為:x1,x2,

由韋達(dá)定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.6、B【解析】

先用含有x的式子表示2015年的綠化面積,進(jìn)而用含有x的式子表示2016年的綠化面積,根據(jù)等式關(guān)系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經(jīng)過兩年的增長,綠化面積由300公頃變?yōu)?63公頃.可列出方程:300(1+x)2=363.故選B.【點睛】本題主要考查一元二次方程的應(yīng)用,找準(zhǔn)其中的等式關(guān)系式解答此題的關(guān)鍵.7、A【解析】

根據(jù)相反數(shù)的定義即可判斷.【詳解】實數(shù)的相反數(shù)是-故選A.【點睛】此題主要考查相反數(shù)的定義,解題的關(guān)鍵是熟知相反數(shù)的定義即可求解.8、C【解析】當(dāng)60cm的木條與20cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為90cm與120cm;當(dāng)60cm的木條與30cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為40cm與80cm;當(dāng)60cm的木條與40cm是對應(yīng)邊時,那么另兩條邊的木條長度分別為30cm與45cm;所以A、B、D選項不符合題意,C選項符合題意,故選C.9、B【解析】

找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.10、D【解析】

根據(jù)算術(shù)平方根的定義求解.【詳解】∵=9,

又∵(±1)2=9,

∴9的平方根是±1,

∴9的算術(shù)平方根是1.

即的算術(shù)平方根是1.

故選:D.【點睛】考核知識點:算術(shù)平方根.理解定義是關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、x≠﹣1【解析】

分式有意義的條件是分母不等于零.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x+1≠0,解得:x≠-1.

故答案是:x≠-1.【點睛】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關(guān)鍵.12、【解析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】的相反數(shù)是?.故答案為?.【點睛】本題考查的知識點是相反數(shù),解題的關(guān)鍵是熟練的掌握相反數(shù).13、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.14、或【解析】試題分析:AC===,因為矩形都相似,且每相鄰兩個矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點:1.相似多邊形的性質(zhì);2.勾股定理;3.規(guī)律型;4.矩形的性質(zhì);5.綜合題.15、【解析】試題解析:畫樹狀圖得:由樹狀圖可知:所有可能情況有12種,其中兩次摸出的小球標(biāo)號的和等于4的占2種,所以其概率=,故答案為.16、x≤2且x≠1【解析】

解:根據(jù)題意得:且x?1≠0,解得:且故答案為且三、解答題(共8題,共72分)17、(1)二次函數(shù)的解析式為,頂點坐標(biāo)為(–1,4);(2)點P橫坐標(biāo)為––1;(3)當(dāng)時,四邊形PABC的面積有最大值,點P().【解析】試題分析:(1)已知拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點式,直接寫出頂點坐標(biāo)即可;(2)把y=2代入解析式,解方程求得x的值,即可得點P的橫坐標(biāo),從而求得點P的坐標(biāo);(3)設(shè)點P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點P的坐標(biāo).試題解析:(1)∵拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點坐標(biāo)為(﹣1,4)(2)設(shè)點P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點P(﹣﹣1,2).(3)設(shè)點P(,),則,,∴=∴當(dāng)時,四邊形PABC的面積有最大值.所以點P().點睛:本題是二次函數(shù)綜合題,主要考查學(xué)生對二次函數(shù)解決動點問題綜合運用能力,動點問題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類問題要會建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問題.18、(1)見解析;(2)DF=【解析】

(1)直接利用等腰三角形的定義結(jié)合勾股定理得出答案;(2)利用直角三角的定義結(jié)合勾股定理得出符合題意的答案.【詳解】(1)如圖(1)所示:△ABE,即為所求;(2)如圖(2)所示:△CDF即為所求,DF=.【點睛】此題主要考查了等腰三角形的定義以及三角形面積求法,正確應(yīng)用網(wǎng)格分析是解題關(guān)鍵.19、見解析【解析】

依據(jù)條件得出∠C=∠DHG=90°,∠CGE=∠GED,依據(jù)F是AD的中點,F(xiàn)G∥AE,即可得到FG是線段ED的垂直平分線,進(jìn)而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD.【詳解】證明:∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FAG,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∵F是AD的中點,F(xiàn)G∥AE,∴H是ED的中點∴FG是線段ED的垂直平分線,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD.(AAS).【點睛】本題考查了全等三角形的判定,線段垂直平分線的判定與性質(zhì),熟練掌握全等三角形的判定定理是解決問題的關(guān)鍵.20、(1)y1=kx+80,y2=30x;(2)見解析.【解析】

(1)設(shè)y1=kx+80,將(2,110)代入求解即可;設(shè)y2=mx,將(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三種情況分析即可.【詳解】解:(1)由題意,設(shè)y1=kx+80,將(2,110)代入,得110=2k+80,解得k=15,則y1與x的函數(shù)表達(dá)式為y1=15x+80;設(shè)y2=mx,將(5,150)代入,得150=5m,解得m=30,則y2與x的函數(shù)表達(dá)式為y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故當(dāng)租車時間為小時時,兩種選擇一樣;當(dāng)租車時間大于小時時,選擇租車公司合算;當(dāng)租車時間小于小時時,選擇共享汽車合算.【點睛】本題考查了一次函數(shù)的應(yīng)用及分類討論的數(shù)學(xué)思想,解答本題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式的方法.21、(1)證明見解析;(1).【解析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據(jù)矩形的性質(zhì)求出OC=OD,根據(jù)菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據(jù)菱形的性質(zhì)得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.【點睛】本題主要考查了矩形的性質(zhì)和菱形的性質(zhì)和判定的應(yīng)用,能靈活運用定理進(jìn)行推理是解此題的關(guān)鍵,注意:菱形的面積等于對角線積的一半.22、見解析【解析】

根據(jù)角平分線的性質(zhì)和直角三角形性質(zhì)求∠BAF=∠ACG.進(jìn)一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學(xué)生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關(guān)鍵.23、(1)EF是⊙O的切線,理由詳見解析;(1)詳見解析;(3)⊙O的半徑的長為1.【解析】

(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到結(jié)論;(1)根據(jù)含30°的直角三角形的性質(zhì)證明即可;(3)由AD是⊙O的直徑,得到∠AED=90°,根據(jù)三角形的內(nèi)角和得到∠EOD=60°,求得∠EGO=30°,根據(jù)三角形和扇形的面積公式即可得到結(jié)論.【詳解】解:(1)連接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切線;(1)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直徑,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵陰影部分的面積解得:r1=4,即r=1,即⊙O的半徑的長為1.【點睛】本題考查了切線的判定,等腰三角形的性質(zhì),圓周角定理,扇形的面積的計算,正確的作出輔助線是解題的關(guān)鍵.24、(1)點M(1,2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論