2024年廣東省深圳市羅湖區(qū)中考數(shù)學二模試卷(含解析)_第1頁
2024年廣東省深圳市羅湖區(qū)中考數(shù)學二模試卷(含解析)_第2頁
2024年廣東省深圳市羅湖區(qū)中考數(shù)學二模試卷(含解析)_第3頁
2024年廣東省深圳市羅湖區(qū)中考數(shù)學二模試卷(含解析)_第4頁
2024年廣東省深圳市羅湖區(qū)中考數(shù)學二模試卷(含解析)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第=page11頁,共=sectionpages11頁2024年廣東省深圳市羅湖區(qū)中考數(shù)學二模試卷一、選擇題:本題共10小題,每小題3分,共30分。在每小題給出的選項中,只有一項是符合題目要求的。1.?(?5)A.?5 B.15 C.±52.由6個完全相同的小正方體組成的幾何體如圖所示,則從上面看得到的平面圖形是(

)A.

B.

C.

D.

3.據(jù)科學研究表明,5G移動通信技術的網(wǎng)絡理論下載速度可達每秒1300000KB以上.其中1300000用科學記數(shù)法表示為A.13×105 B.1.3×1064.九年級一班甲、乙、丙、丁四名學生本學期數(shù)學測驗成績的平均分都是90分,方差分別是S甲2=16,S乙2=24A.甲 B.乙 C.丙 D.丁5.如圖,菱形ABCD中,AC=8,A.48

B.40

C.24

D.206.下列運算正確的是(

)A.2a2b?a2b=a7.如圖,將△ABC沿BC方向平移到△DEF,若A,D之間的距離為2,C

A.6 B.7 C.8 D.98.某種品牌運動服經(jīng)過兩次降價,每件零售價由560元降為315元,已知兩次降價的百分率相同,求每次降價的百分率,設每次降價的百分率為x,下面所列的方程中正確的是(

)A.560(1+x)2=315 9.2022北京冬奧會延慶賽區(qū)正在籌建的高山滑雪速滑雪道的平均坡角約為20°,在此雪道向下滑行100米,高度大約下降了米.(

)

A.100sin20° B.100c10.如圖,在四邊形ACDB中,AB/?/CD,AC=AD,P是線段AC上一點(不與點A、C重合),∠C

A.23 B.3 C.二、填空題:本題共5小題,每小題3分,共15分。11.為了描述我市某一天氣溫變化情況,從“扇形統(tǒng)計圖”“條形統(tǒng)計圖”“折線統(tǒng)計圖”中選擇一種統(tǒng)計圖,最適合的統(tǒng)計圖是______.12.如圖,同一時刻在陽光照射下,樹AB的影子BC=3m,小明的影子B′C′=13.如圖,OA、OB是⊙O的半徑,C是⊙O上一點,∠AOB=

14.直線y1=kx(k≠0)與直線

15.如圖,直線y=?x+a與反比例函數(shù)y=4x(x>0)只有唯一的公共點A,與反比例函數(shù)

y=kx

三、解答題:本題共7小題,共55分。解答應寫出文字說明,證明過程或演算步驟。16.(本小題5分)

計算:2sin17.(本小題7分)

先化簡,再求值:(3aa?218.(本小題8分)

為了推動陽光體育運動的廣泛開展,引導學生走向操場,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用.現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖1和圖2,請根據(jù)相關信息,解答下列問題:

(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為______人,圖1中m的值為______;

(2)根據(jù)樣本數(shù)據(jù),若學校計劃購買200雙運動鞋,則建議購買3519.(本小題8分)

如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P在⊙O上,∠PBC=∠C.

(120.(本小題8分)

2023年“爾濱”厚積薄發(fā),旅游業(yè)火爆出圈,某紀念品經(jīng)銷店欲購進A、B兩種紀念品,用900元購進的A種紀念品與用1200元購進的B種紀念品的數(shù)量相同,每件B種紀念品的進價比每件A種紀念品的進價多5元.

(1)求A、B兩種紀念品每件的進價分別為多少元?

(2)若該紀念品經(jīng)銷店A種紀念品每件售價18元,B種紀念品每件售價25元,這兩種紀念品共購進500件,且這兩種紀念品全部售出后總獲利不低于1700元,求21.(本小題9分)

綜合與應用

如果將運動員的身體看作一點,則他在跳水過程中運動的軌跡可以看作為拋物線的一部分.建立如圖2所示的平面直角坐標系xOy,運動員從點A(0,10)起跳,從起跳到入水的過程中,運動員的豎直高度y(m)與水平距離x水平距離x011.5豎直高度y10106.25根據(jù)上述數(shù)據(jù),求出y關于x的關系式;

(2)在(1)的這次訓練中,求運動員甲從起點A到入水點的水平距離OD的長;

(3)信息1:記運動員甲起跳后達到最高點B到水面的高度為k(m),從到達到最高點B開始計時,則他到水面的距離h(m)與時間t(s)之間滿足h=?5t2+k.

信息2:已知運動員甲在達到最高點后需要1.6s的時間才能完成極具難度的270C動作.22.(本小題10分)

【問題提出】

(1)如圖1,在邊長為6的等邊△ABC中,點D在邊BC上,CD=2,連接AD,則△ACD的面積為______;

【問題探究】

(2)如圖2,已知在邊長為6的正方形ABCD中,點E在邊BC上,點F在邊CD上,且∠EAF=45°,若EF=5,求△AEF的面積;

【問題解決】

(3)如圖3是我市華南大道的一部分,因自來水搶修,需要在AB=4米,答案和解析1.【答案】D

【解析】解:?(?5)表示?5的相反數(shù),即?(?5)等于52.【答案】B

【解析】解:從上面看得到的平面圖形為:.

故選:B.

從上面看,可以看到三行,中間一行有3個小正方形,上面一行最右側有1個小正方形,下面一行最左側有1個小正方形.

本題考查從不同方向觀察幾何體,掌握幾何體三種視圖的空間想象能力是關鍵.3.【答案】B

【解析】解:1300000=1.3×106.

故選:B.

由題意可知本題中a=1.3,n=6,即可得到答案.

本題考查了正整數(shù)指數(shù)科學記數(shù)法,“對于一個絕對值大于10的數(shù),科學記數(shù)法的表示形式為a4.【答案】A

【解析】解:∵S甲<S乙<S丙<S丁,5.【答案】C

【解析】解:菱形的面積為6×8÷2=24,

故選:6.【答案】A

【解析】【分析】

根據(jù)合并同類項的法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)不變進行計算即可.

此題主要考查了合并同類項,關鍵是掌握合并同類項法則.

【解答】

解:A、2a2b?a2b=a2b,故原題計算正確;

B、2a?a=a,故原題計算錯誤;7.【答案】B

【解析】解:∵將△ABC沿BC方向平移到△DEF的位置,點A,D之間的距離為2,

∴BE=CF=2,

∵CE=38.【答案】D

【解析】解:設每次降價的百分率為x,由題意得:

560(1?x)2=315,

故選:D.

設每次降價的百分率為x,根據(jù)降價后的價格=降價前的價格(19.【答案】C

【解析】解:由題意得:AB⊥BC,

在Rt△ABC中,∠ACB=20°,AC=100米,

∴AB=A10.【答案】C

【解析】解:作DE⊥PB于點E,則∠PED=90°,

∵AC=AD,∠C=60°,

∴△ACD是等邊三角形,

∴AD=CD,∠C=∠ADC=60°,

∵AB/?/CD,

∴∠BAD=∠ADC=60°,

∴∠BAD=∠C,

∵∠PDB=60°,

∴∠ADB=∠CDP=60°?∠ADP,

∴11.【答案】折線統(tǒng)計圖

【解析】解:描述我市某一天氣溫變化情況,最適合的統(tǒng)計圖是折線統(tǒng)計圖,

故答案為:折線統(tǒng)計圖.

根據(jù)題意,天氣變化情況復雜,用折線圖表示,即可求解.

本題主要考查統(tǒng)計圖的特點,扇形圖:描述百分比(構成比)的大?。徽劬€圖:用線條的升降表示事物的發(fā)展變化趨勢,主要用于

計量資料,描述兩個變量間關系;條形圖:表示獨立指標在不同階段的情況.12.【答案】3.4m【解析】解:根據(jù)題意得ABBC=A′B′B′C′,即AB3=1.71.513.【答案】21

【解析】解:∵∠AOB=42°,

∴∠A14.【答案】x>【解析】解:由函數(shù)圖象可知,

當x>?1時,

直線y1=kx(k≠015.【答案】?5【解析】解:聯(lián)立方程組得y=?x+ay=4x,整理得x2?ax+4=0,

∵只有一個交點,

∴Δ=a2?16=0,

∴a=±4,舍去負值,

∴a=4.

此時交點A(2,2),

一次函數(shù)解析式為y=?x+4,當y=0時,x=4,B(4,0),

∴線段BD的中點D坐標為(16.【答案】解:2sin45°?8+(π【解析】先化簡各式,然后再進行計算即可解答.

本題考查了實數(shù)的運算,零指數(shù)冪,特殊角的三角函數(shù)值,準確熟練地進行計算是解題的關鍵.17.【答案】解:(3aa?2?aa?2)÷2a【解析】先計算括號內(nèi)的,再計算除法,然后把a=1代入,即可求解.18.【答案】40

15

【解析】解:(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為:6+12+10+8+4=40

(人),圖中m的值為:100?25?30?20?10=15,

故答案為:40;15.

(19.【答案】(1)證明:∵∠P=∠C,∠PBC=∠C,

∴∠P=∠PBC,

∴CB//PD;

(2)解:如圖所示,連接CO,

設O【解析】(1)根據(jù)同圓中,同弧所對的圓周角相等可得∠P=∠C,再由條件∠PBC=∠C可得∠P=20.【答案】解:(1)設A種紀念品每件的進價為x元,則B種紀念品每件的進價(x+5)元,

由題意得900x=1200x+5,

解得:x=15,

經(jīng)檢驗:x=15是原分式方程的解,

x+5=20,

答:A種紀念品每件的進價為15元,則B種紀念品每件的進價20元;

(2)設A種紀念品購進a件,由題意得:【解析】(1)設A種紀念品每件的進價為x元,則B種紀念品每件的進價(x+2)元,根據(jù)用900元購進的A種紀念品與用1200元購進的B種紀念品的數(shù)量相同列出分式方程,再解即可;

(2)設A種紀念品購進a件,由題意得不等關系:21.【答案】a≤【解析】(1)解:由運動員的豎直高度y(m)與水平距離x(m)滿足二次函數(shù)的關系,

設二次函數(shù)的關系為y=ax2+bx+c,

代入(0,10),(1,10),(1.5,6.25),

得c=10a+b+c=10,94a+32b+c=6.25,

解得a=?5b=5c=10,

∴y關于x的關系式為y=?5x2+5x+10;

(2)把y=0代入y=?5x2+5x+10,

得?5x2+5x+10=0,

解得x1=2,x2=?1(不合題意,舍去),

∴運動員甲從起點A到入水點的水平距離OD的長為2米;

(3)①運動員甲不能成功完成此動作,理由如下:

由運動員的豎直高度y(m)與水平距離x(m)滿足二次函數(shù)的關系為y=?5x2+5x+10,

整理得y=?5(x?12)2+454,

得運動員甲起跳后達到最高點B到水面的高度k為454m,即22.【答案】3【解析】解:(1)如圖1所示,過點A作AE⊥BC于E,

∵△ABC是邊長為6的等邊三角形,

∴AC=BC=6,CE=12BC=3,

∴AE=AC2?CE2=62?32=33,

∵CD=2,

∴S△ACD=12AE?CD=33;

故答案為:33;

(2)如圖2所示,延長EB到G使得BG=DF,連接AG,

∵四邊形ABCD是正方形,

∴AB=AD,∠D=∠ABG=∠BAD=90°,

∴△ABG≌△ADF(S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論