版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年貴州省安順市平壩第一高級中學高三第二次聯(lián)考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.2.若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為()A.85 B.84 C.57 D.563.設,且,則()A. B. C. D.4.已知函數(shù).下列命題:①函數(shù)的圖象關于原點對稱;②函數(shù)是周期函數(shù);③當時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④5.若,則的虛部是A.3 B. C. D.6.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.27.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.8.已知函數(shù)f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C. D.9.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.10.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.11.已知,,,則的最小值為()A. B. C. D.12.函數(shù)在上的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,三條側棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.14.設滿足約束條件,則目標函數(shù)的最小值為_.15.已知函數(shù),若函數(shù)有個不同的零點,則的取值范圍是___________.16.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養(yǎng)了此種盆栽植物10株,設為其中成活的株數(shù),若的方差,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是矩形,四條側棱長均相等.(1)求證:平面;(2)求證:平面平面.18.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+19.(12分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.20.(12分)已知函數(shù)(,)滿足下列3個條件中的2個條件:①函數(shù)的周期為;②是函數(shù)的對稱軸;③且在區(qū)間上單調(diào).(Ⅰ)請指出這二個條件,并求出函數(shù)的解析式;(Ⅱ)若,求函數(shù)的值域.21.(12分)某工廠為提高生產(chǎn)效率,需引進一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.22.(10分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;綜上選B.2、A【解析】
先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎題.3、C【解析】
將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關系即可求解,屬于簡單題目.4、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當時,,,,此時與無交點;當時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導數(shù)知識的綜合應用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學生的分析和推理能力有較高要求.5、B【解析】
因為,所以的虛部是.故選B.6、D【解析】
由拋物線方程可得焦點坐標及準線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標,即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設則,即,所以.所以線段的中點到軸的距離為.故選:D.【點睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關鍵是由拋物線的定義求得兩點橫坐標的和.7、D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.8、D【解析】
由已知可將問題轉(zhuǎn)化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結合圖象即可得解.【詳解】若關于x的方程f(x)=kx-恰有4個不相等的實數(shù)根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數(shù)y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數(shù)與方程思想及轉(zhuǎn)化能力,還考查了導數(shù)的幾何意義及計算能力、觀察能力,屬于難題.9、A【解析】
根據(jù)復數(shù)的乘法運算法則化簡可得,根據(jù)純虛數(shù)的概念可得結果.【詳解】由題可知原式為,該復數(shù)為純虛數(shù),所以.故選:A【點睛】本題考查復數(shù)的運算和復數(shù)的分類,屬基礎題.10、C【解析】
模擬執(zhí)行程序框圖,即可容易求得結果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎題.11、B【解析】,選B12、D【解析】
討論的取值范圍,然后對函數(shù)進行求導,利用導數(shù)的幾何意義即可判斷.【詳解】當時,,則,所以函數(shù)在上單調(diào)遞增,令,則,根據(jù)三角函數(shù)的性質(zhì),當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數(shù)在上單調(diào)遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數(shù)的圖像,考查了導數(shù)與函數(shù)單調(diào)性的關系以及導數(shù)的幾何意義,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,可表示出,由三棱錐性質(zhì)得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關鍵是掌握三棱錐的性質(zhì):三條側棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側棱的平方和.14、【解析】
根據(jù)滿足約束條件,畫出可行域,將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結合的思想方法,屬于基礎題.15、【解析】
作出函數(shù)的圖象及直線,如下圖所示,因為函數(shù)有個不同的零點,所以由圖象可知,,,所以.16、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結,交于點,連結,在矩形中,點為的中點,又,故,,又,平面,所以平面,又平面,所以平面平面.18、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題意知,f(1)=|1-2a|-|1-a|>1,若a≤12,則不等式化為1-2a-1+a>1,解得若12<a<1,則不等式化為2a-1-(1-a)>1,解得若a≥1,則不等式化為2a-1+1-a>1,解得a>1,綜上所述,a的取值范圍是(-∞,-1)∪(1,+∞);(Ⅱ)由題意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max當x∈(-∞,a]時,|x-2a|-|x-a|≤-a,[f(x)]max因為|y+2020|+|y-a|≥|a+2020|,所以當(y+2020)(y-a)≤0時,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,結合a<0,所以a的取值范圍是[-1010,0).【點睛】本題考查了絕對值不等式的求解問題,含有絕對值的不等式恒成立應用問題,以及絕對值三角不等式的應用,考查了分類討論思想,是中檔題.含有絕對值的不等式恒成立應用問題,關鍵是等價轉(zhuǎn)化為最值問題,再通過絕對值三角不等式求解最值,從而建立不等關系,求出參數(shù)范圍.19、(1)1(2)1【解析】分析:(1)當時可得,可得.(2)先得到關系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數(shù)的有關運算,解題時要注意所給出的的定義,并結合組合數(shù)公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現(xiàn)錯誤.20、(Ⅰ)只有①②成立,;(Ⅱ).【解析】
(Ⅰ)依次討論①②成立,①③成立,②③成立,計算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數(shù)值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數(shù)的值域為.【點睛】本題考查了三角函數(shù)的周期,對稱軸,單調(diào)性,值域,表達式,意在考查學生對于三角函數(shù)知識的綜合應用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年新型城鎮(zhèn)化項目宣傳策劃與廣告制作合同3篇
- 二零二五年度數(shù)字經(jīng)濟產(chǎn)業(yè)園運營管理合同3篇
- 二零二五年酒店客房服務質(zhì)量監(jiān)督單位合同范本3篇
- 二零二五年度電梯設備采購與安裝一體化服務合同3篇
- 二零二五年路燈照明產(chǎn)品研發(fā)、生產(chǎn)、銷售及售后服務合同5篇
- 二零二五年高端房地產(chǎn)抵押租賃合同模板3篇
- 二零二五版體育產(chǎn)業(yè)貸款合同與信用額度授信協(xié)議3篇
- 二零二五版昆明公租房電子合同租賃合同解除與終止流程3篇
- 二零二五年度簡單終止勞動合同協(xié)議規(guī)范勞動合同解除2篇
- 2025年彩鋼建筑一體化解決方案承包合同3篇
- NGS二代測序培訓
- 《材料合成與制備技術》課程教學大綱(材料化學專業(yè))
- 小紅書食用農(nóng)產(chǎn)品承諾書示例
- 釘釘OA辦公系統(tǒng)操作流程培訓
- 新生兒科年度護理質(zhì)控總結
- GB/T 15934-2024電器附件電線組件和互連電線組件
- 《工貿(mào)企業(yè)有限空間作業(yè)安全規(guī)定》知識培訓
- 高層次人才座談會發(fā)言稿
- 垃圾清運公司管理制度(人員、車輛、質(zhì)量監(jiān)督、會計管理制度)
- 《建筑工程設計文件編制深度規(guī)定》(2022年版)
- 營銷人員薪酬考核方案
評論
0/150
提交評論