山東省濟(jì)南商河縣聯(lián)考2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第1頁(yè)
山東省濟(jì)南商河縣聯(lián)考2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第2頁(yè)
山東省濟(jì)南商河縣聯(lián)考2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第3頁(yè)
山東省濟(jì)南商河縣聯(lián)考2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第4頁(yè)
山東省濟(jì)南商河縣聯(lián)考2023-2024學(xué)年中考猜題數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省濟(jì)南商河縣聯(lián)考2023-2024學(xué)年中考猜題數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.2.如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線(xiàn)EF分別交AC,AB邊于E,F(xiàn)點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為A.6 B.8 C.10 D.123.如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=2x上,第二象限的點(diǎn)B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.224.如圖,在?ABCD中,AB=2,BC=1.以點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)N,射線(xiàn)CN交BA的延長(zhǎng)線(xiàn)于點(diǎn)E,則AE的長(zhǎng)是()A. B.1 C. D.5.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a46.下列式子中,與互為有理化因式的是()A. B. C. D.7.下列計(jì)算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x38.一、單選題如圖中的小正方形邊長(zhǎng)都相等,若△MNP≌△MEQ,則點(diǎn)Q可能是圖中的()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D9.下列各數(shù)中,為無(wú)理數(shù)的是()A. B. C. D.10.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°11.關(guān)于x的一元二次方程x2-2x-(m-1)=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.且 B. C.且 D.12.如圖,將邊長(zhǎng)為2cm的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.三個(gè)小伙伴各出資a元,共同購(gòu)買(mǎi)了價(jià)格為b元的一個(gè)籃球,還剩下一點(diǎn)錢(qián),則剩余金額為_(kāi)_元(用含a、b的代數(shù)式表示)14.將三角形紙片()按如圖所示的方式折疊,使點(diǎn)落在邊上,記為點(diǎn),折痕為,已知,,若以點(diǎn),,為頂點(diǎn)的三角形與相似,則的長(zhǎng)度是______.15.我們定義:關(guān)于x的函數(shù)y=ax2+bx與y=bx2+ax(其中a≠b)叫做互為交換函數(shù).如y=3x2+4x與y=4x2+3x是互為交換函數(shù).如果函數(shù)y=2x2+bx與它的交換函數(shù)圖象頂點(diǎn)關(guān)于x軸對(duì)稱(chēng),那么b=_____.16.圖,A,B是反比例函數(shù)y=圖象上的兩點(diǎn),過(guò)點(diǎn)A作AC⊥y軸,垂足為C,AC交OB于點(diǎn)D.若D為OB的中點(diǎn),△AOD的面積為3,則k的值為_(kāi)_______.17.如圖,在菱形ABCD中,點(diǎn)E、F在對(duì)角線(xiàn)BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.18.矩形紙片ABCD中,AB=3cm,BC=4cm,現(xiàn)將紙片折疊壓平,使A與C重合,設(shè)折痕為EF,則重疊部分△AEF的面積等于_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)已知拋物線(xiàn)y=x2﹣6x+9與直線(xiàn)y=x+3交于A(yíng),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線(xiàn)的頂點(diǎn)為C,直線(xiàn)y=x+3與x軸交于點(diǎn)D.(1)求拋物線(xiàn)的頂點(diǎn)C的坐標(biāo)及A,B兩點(diǎn)的坐標(biāo);(2)將拋物線(xiàn)y=x2﹣6x+9向上平移1個(gè)單位長(zhǎng)度,再向左平移t(t>0)個(gè)單位長(zhǎng)度得到新拋物線(xiàn),若新拋物線(xiàn)的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍;(3)點(diǎn)P(m,n)(﹣3<m<1)是拋物線(xiàn)y=x2﹣6x+9上一點(diǎn),當(dāng)△PAB的面積是△ABC面積的2倍時(shí),求m,n的值.20.(6分)在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線(xiàn)l1:y=x+b交于點(diǎn)A(3,a-2).(1)求a,b的值;(2)直線(xiàn)l2:y=-x+m與x軸交于點(diǎn)B,與直線(xiàn)l1交于點(diǎn)C,若S△ABC≥6,求m的取值范圍.21.(6分)如圖,在的矩形方格紙中,每個(gè)小正方形的邊長(zhǎng)均為,線(xiàn)段的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.在圖中畫(huà)出以線(xiàn)段為底邊的等腰,其面積為,點(diǎn)在小正方形的頂點(diǎn)上;在圖中面出以線(xiàn)段為一邊的,其面積為,點(diǎn)和點(diǎn)均在小正方形的頂點(diǎn)上;連接,并直接寫(xiě)出線(xiàn)段的長(zhǎng).22.(8分)如圖,已知與拋物線(xiàn)C1過(guò)A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線(xiàn)C1的解析式.(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)P,D為第四象限內(nèi)的一點(diǎn),若△CPD為等腰直角三角形,求出D點(diǎn)坐標(biāo).23.(8分)趙亮同學(xué)想利用影長(zhǎng)測(cè)量學(xué)校旗桿的高度,如圖,他在某一時(shí)刻立1米長(zhǎng)的標(biāo)桿測(cè)得其影長(zhǎng)為1.2米,同時(shí)旗桿的投影一部分在地面上,另一部分在某一建筑的墻上,分別測(cè)得其長(zhǎng)度為9.6米和2米,則學(xué)校旗桿的高度為_(kāi)_______米.24.(10分)某校為表彰在“書(shū)香校園”活動(dòng)中表現(xiàn)積極的同學(xué),決定購(gòu)買(mǎi)筆記本和鋼筆作為獎(jiǎng)品.已知5個(gè)筆記本、2支鋼筆共需要100元;4個(gè)筆記本、7支鋼筆共需要161元(1)筆記本和鋼筆的單價(jià)各多少元?(2)恰好“五一”,商店舉行“優(yōu)惠促銷(xiāo)”活動(dòng),具體辦法如下:筆記本9折優(yōu)惠;鋼筆10支以上超出部分8折優(yōu)惠若買(mǎi)x個(gè)筆記本需要y1元,買(mǎi)x支鋼筆需要y2元;求y1、y2關(guān)于x的函數(shù)解析式;(3)若購(gòu)買(mǎi)同一種獎(jiǎng)品,并且該獎(jiǎng)品的數(shù)量超過(guò)10件,請(qǐng)你分析買(mǎi)哪種獎(jiǎng)品省錢(qián).25.(10分)解不等式組:,并寫(xiě)出它的所有整數(shù)解.26.(12分)先化簡(jiǎn),再求值:,其中x=.27.(12分)已知關(guān)于x的一元二次方程.求證:方程有兩個(gè)不相等的實(shí)數(shù)根;如果方程的兩實(shí)根為,,且,求m的值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠1,再根據(jù)兩直線(xiàn)平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.2、C【解析】

連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長(zhǎng),再再根據(jù)EF是線(xiàn)段AC的垂直平分線(xiàn)可知,點(diǎn)C關(guān)于直線(xiàn)EF的對(duì)稱(chēng)點(diǎn)為點(diǎn)A,故AD的長(zhǎng)為CM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線(xiàn)段AC的垂直平分線(xiàn),∴點(diǎn)C關(guān)于直線(xiàn)EF的對(duì)稱(chēng)點(diǎn)為點(diǎn)A,∴AD的長(zhǎng)為CM+MD的最小值,∴△CDM的周長(zhǎng)最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點(diǎn)睛】本題考查的是軸對(duì)稱(chēng)-最短路線(xiàn)問(wèn)題,熟知等腰三角形三線(xiàn)合一的性質(zhì)是解答此題的關(guān)鍵.3、C【解析】試題分析:作AC⊥x軸于點(diǎn)C,作BD⊥x軸于點(diǎn)D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點(diǎn):1.相似三角形的判定與性質(zhì);2.反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.4、B【解析】分析:只要證明BE=BC即可解決問(wèn)題;詳解:∵由題意可知CF是∠BCD的平分線(xiàn),∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點(diǎn)睛:本題考查的是作圖-基本作圖,熟知角平分線(xiàn)的作法是解答此題的關(guān)鍵.5、D【解析】

各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.6、B【解析】

直接利用有理化因式的定義分析得出答案.【詳解】∵()(,)=12﹣2,=10,∴與互為有理化因式的是:,故選B.【點(diǎn)睛】本題考查了有理化因式,如果兩個(gè)含有二次根式的非零代數(shù)式相乘,它們的積不含有二次根式,就說(shuō)這兩個(gè)非零代數(shù)式互為有理化因式.單項(xiàng)二次根式的有理化因式是它本身或者本身的相反數(shù);其他代數(shù)式的有理化因式可用平方差公式來(lái)進(jìn)行分步確定.7、B【解析】分析:直接利用合并同類(lèi)項(xiàng)法則以及同底數(shù)冪的乘除運(yùn)算法則和積的乘方運(yùn)算法則分別計(jì)算得出答案.詳解:A、不是同類(lèi)項(xiàng),無(wú)法計(jì)算,故此選項(xiàng)錯(cuò)誤;B、正確;C、故此選項(xiàng)錯(cuò)誤;D、故此選項(xiàng)錯(cuò)誤;故選:B.點(diǎn)睛:此題主要考查了合并同類(lèi)項(xiàng)以及同底數(shù)冪的乘除運(yùn)算和積的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.8、D【解析】

根據(jù)全等三角形的性質(zhì)和已知圖形得出即可.【詳解】解:∵△MNP≌△MEQ,∴點(diǎn)Q應(yīng)是圖中的D點(diǎn),如圖,故選:D.【點(diǎn)睛】本題考查了全等三角形的性質(zhì),能熟記全等三角形的性質(zhì)的內(nèi)容是解此題的關(guān)鍵,注意:全等三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等.9、D【解析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無(wú)理數(shù),故選D.10、A【解析】

根據(jù)圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓的內(nèi)接四邊形性質(zhì),解題關(guān)鍵是熟記圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角(就是和它相鄰的內(nèi)角的對(duì)角).11、A【解析】

根據(jù)一元二次方程的系數(shù)結(jié)合根的判別式△>1,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2﹣2x﹣(m﹣1)=1有兩個(gè)不相等的實(shí)數(shù)根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故選B.【點(diǎn)睛】本題考查了根的判別式,牢記“當(dāng)△>1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.12、A【解析】

作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結(jié)果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點(diǎn)A的坐標(biāo)為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點(diǎn)C的坐標(biāo)為(,﹣1).故選A.【點(diǎn)睛】本題考查了正方形的性質(zhì)、坐標(biāo)與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對(duì)應(yīng)邊相等是解決問(wèn)題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(3a﹣b)【解析】解:由題意可得,剩余金額為:(3a-b)元,故答案為:(3a-b).點(diǎn)睛:本題考查列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的代數(shù)式.14、或2【解析】

由折疊性質(zhì)可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對(duì)兩種情況進(jìn)行討論,設(shè)出B’F=BF=x,列出比例式方程解方程即可得到結(jié)果.【詳解】由折疊性質(zhì)可知B’F=BF,設(shè)B’F=BF=x,故CF=4-x當(dāng)△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當(dāng)△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長(zhǎng)度可以為或2.【點(diǎn)睛】本題主要考查相似三角形性質(zhì),解題關(guān)鍵在于能夠?qū)蓚€(gè)相似三角形進(jìn)行分類(lèi)討論.15、﹣1【解析】

根據(jù)題意可以得到交換函數(shù),由頂點(diǎn)關(guān)于x軸對(duì)稱(chēng),從而得到關(guān)于b的方程,可以解答本題.【詳解】由題意函數(shù)y=1x1+bx的交換函數(shù)為y=bx1+1x.∵y=1x1+bx=,y=bx1+1x=,函數(shù)y=1x1+bx與它的交換函數(shù)圖象頂點(diǎn)關(guān)于x軸對(duì)稱(chēng),∴﹣=﹣且,解得:b=﹣1.故答案為﹣1.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì).理解交換函數(shù)的意義是解題的關(guān)鍵.16、1.【解析】先設(shè)點(diǎn)D坐標(biāo)為(a,b),得出點(diǎn)B的坐標(biāo)為(2a,2b),A的坐標(biāo)為(4a,b),再根據(jù)△AOD的面積為3,列出關(guān)系式求得k的值.解:設(shè)點(diǎn)D坐標(biāo)為(a,b),∵點(diǎn)D為OB的中點(diǎn),∴點(diǎn)B的坐標(biāo)為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標(biāo)為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點(diǎn)睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運(yùn)用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關(guān)系式是解題的關(guān)鍵.17、【解析】

利用正方形對(duì)角線(xiàn)相等且互相平分,得出EO=AO=BE,進(jìn)而得出答案.【詳解】解:∵四邊形AECF為正方形,

∴EF與AC相等且互相平分,

∴∠AOB=90°,AO=EO=FO,

∵BE=DF=BD,

∴BE=EF=FD,

∴EO=AO=BE,

∴tan∠ABE==.

故答案為:【點(diǎn)睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,正確得出EO=AO=BE是解題關(guān)鍵.18、7516【解析】試題分析:要求重疊部分△AEF的面積,選擇AF作為底,高就等于A(yíng)B的長(zhǎng);而由折疊可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代換后,可知AE=AF,問(wèn)題轉(zhuǎn)化為在Rt△ABE中求AE.因此設(shè)AE=x,由折疊可知,EC=x,BE=4﹣x,在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,解得:x=258,即AE=AF=25因此可求得S△AEF=12×AF×AB=12×考點(diǎn):翻折變換(折疊問(wèn)題)三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線(xiàn)的一般式配方為頂點(diǎn)式即可求出點(diǎn)C的坐標(biāo),聯(lián)立拋物線(xiàn)與直線(xiàn)的解析式即可求出A、B的坐標(biāo).(Ⅱ)由題意可知:新拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(2﹣t,1),然后求出直線(xiàn)AC的解析式后,將點(diǎn)E的坐標(biāo)分別代入直線(xiàn)AC與AD的解析式中即可求出t的值,從而可知新拋物線(xiàn)的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線(xiàn)AB與y軸交于點(diǎn)F,連接CF,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G,由直線(xiàn)y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點(diǎn)G在直線(xiàn)y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線(xiàn)y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點(diǎn)坐標(biāo)為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(2﹣t,1),設(shè)直線(xiàn)AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線(xiàn)AC的解析式為y=﹣2x+1.當(dāng)點(diǎn)E在直線(xiàn)AC上時(shí),﹣2(2﹣t)+1=1,解得:t=.當(dāng)點(diǎn)E在直線(xiàn)AD上時(shí),(2﹣t)+2=1,解得:t=5,∴當(dāng)點(diǎn)E在△DAC內(nèi)時(shí),<t<5;(III)如圖,直線(xiàn)AB與y軸交于點(diǎn)F,連接CF,過(guò)點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G.由直線(xiàn)y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點(diǎn)G在直線(xiàn)y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點(diǎn)P在點(diǎn)G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在拋物線(xiàn)y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.∵﹣2<m<1,∴m=不合題意,舍去,∴m=,∴n=m+4=.點(diǎn)睛:本題是二次函數(shù)綜合題,涉及待定系數(shù)法,解方程,勾股定理,三角形的面積公式,綜合程度較高,需要學(xué)生綜合運(yùn)用所學(xué)知識(shí).20、(1)a=3,b=-2;(2)m≥8或m≤-2【解析】

(1)把A點(diǎn)坐標(biāo)代入反比例解析式確定出a的值,確定出A坐標(biāo),代入一次函數(shù)解析式求出b的值;(2)分別求出直線(xiàn)l1與x軸交于點(diǎn)D,再求出直線(xiàn)l2與x軸交于點(diǎn)B,從而得出直線(xiàn)l2與直線(xiàn)l1交于點(diǎn)C坐標(biāo),分兩種情況進(jìn)行討論:①當(dāng)S△ABC=S△BCD+S△ABD=6時(shí),利用三角形的面積求出m的值,②當(dāng)S△ABC=S△BCD?S△ABD=6時(shí),利用三角形的面積求出m的值,從而得出m的取值范圍.【詳解】(1)∵點(diǎn)A在圖象上∴∴a=3∴A(3,1)∵點(diǎn)A在y=x+b圖象上∴1=3+b∴b=-2∴解析式y(tǒng)=x-2(2)設(shè)直線(xiàn)y=x-2與x軸的交點(diǎn)為D∴D(2,0)①當(dāng)點(diǎn)C在點(diǎn)A的上方如圖(1)∵直線(xiàn)y=-x+m與x軸交點(diǎn)為B∴B(m,0)(m>3)∵直線(xiàn)y=-x+m與直線(xiàn)y=x-2相交于點(diǎn)C∴解得:∴C∵S△ABC=S△BCD-S△ABD≥6∴∴m≥8②若點(diǎn)C在點(diǎn)A下方如圖2∵S△ABC=S△BCD+S△ABD≥6∴∴m≤-2綜上所述,m≥8或m≤-2【點(diǎn)睛】此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,三角形的面積,利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.21、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析,.【解析】

(1)直接利用網(wǎng)格結(jié)合勾股定理得出符合題意的答案;(2)直接利用網(wǎng)格結(jié)合平行四邊形的性質(zhì)以及勾股定理得出符合題意的答案;(3)連接CE,根據(jù)勾股定理求出CE的長(zhǎng)寫(xiě)出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì)、平行四邊形的性質(zhì)、勾股定理,正確應(yīng)用勾股定理是解題的關(guān)鍵.22、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】

(1)設(shè)解析式為y=a(x-3)(x+1),把點(diǎn)C(0,-3)代入即可求出解析式;(2)根據(jù)題意作出圖形,根據(jù)等腰直角三角形的性質(zhì)即可寫(xiě)出坐標(biāo).【詳解】(1)設(shè)解析式為y=a(x-3)(x+1),把點(diǎn)C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對(duì)稱(chēng)軸為x=1,過(guò)D1作D1H⊥x軸,∵△CPD為等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)過(guò)點(diǎn)D2F⊥y軸,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由圖可知CD1與PD2交于D3,此時(shí)PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD為等腰直角三角形.【點(diǎn)睛】此題主要考察二次函數(shù)與等腰直角三角形結(jié)合的題,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì)及等腰直角三

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論