山東省威海市文登區(qū)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁(yè)
山東省威海市文登區(qū)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁(yè)
山東省威海市文登區(qū)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁(yè)
山東省威海市文登區(qū)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁(yè)
山東省威海市文登區(qū)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省威海市文登區(qū)達(dá)標(biāo)名校2024年十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是(

)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x22.有兩組數(shù)據(jù),A組數(shù)據(jù)為2、3、4、5、6;B組數(shù)據(jù)為1、7、3、0、9,這兩組數(shù)據(jù)的()A.中位數(shù)相等B.平均數(shù)不同C.A組數(shù)據(jù)方差更大D.B組數(shù)據(jù)方差更大3.如圖,在中,,將折疊,使點(diǎn)落在邊上的點(diǎn)處,為折痕,若,則的值為()A. B. C. D.4.隨著生活水平的提高,小林家購(gòu)置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時(shí)間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時(shí)走x千米,根據(jù)題意可列方程為()A. B. C. D.5.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.6.實(shí)數(shù)的相反數(shù)是()A. B. C. D.7.今年,我省啟動(dòng)了“關(guān)愛留守兒童工程”.某村小為了了解各年級(jí)留守兒童的數(shù)量,對(duì)一到六年級(jí)留守兒童數(shù)量進(jìn)行了統(tǒng)計(jì),得到每個(gè)年級(jí)的留守兒童人數(shù)分別為10,15,10,17,18,1.對(duì)于這組數(shù)據(jù),下列說法錯(cuò)誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是8.如圖,AD為△ABC的中線,點(diǎn)E為AC邊的中點(diǎn),連接DE,則下列結(jié)論中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB9.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時(shí)間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎(jiǎng)的概率為1%”表示買100張彩票肯定會(huì)中獎(jiǎng)D.“拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近10.如圖是由5個(gè)大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.11.矩形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,4)、B(1,1)、C(5,1),則點(diǎn)D的坐標(biāo)為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)12.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢(shì),才能穿墻而過,否則會(huì)被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個(gè)不同形狀的“姿勢(shì)”分別穿過這兩個(gè)空洞,則該幾何體為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為,則a的值是_____.14.如圖,已知圓柱底面周長(zhǎng)為6cm,圓柱高為2cm,在圓柱的側(cè)面上,過點(diǎn)A和點(diǎn)C嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為_____cm.15.如圖所示一棱長(zhǎng)為3cm的正方體,把所有的面均分成3×3個(gè)小正方形.其邊長(zhǎng)都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點(diǎn)A沿表面爬行至側(cè)面的B點(diǎn),最少要用_____秒鐘.16.如圖,直線y=2x+4與x,y軸分別交于A,B兩點(diǎn),以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,將點(diǎn)C向左平移,使其對(duì)應(yīng)點(diǎn)C′恰好落在直線AB上,則點(diǎn)C′的坐標(biāo)為.17.25位同學(xué)10秒鐘跳繩的成績(jī)匯總?cè)缦卤恚喝藬?shù)1234510次么跳繩次數(shù)的中位數(shù)是_____________.18.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點(diǎn)上,從C、D、E、F四點(diǎn)中任取一點(diǎn),與點(diǎn)A、B為頂點(diǎn)作三角形,則所作三角形為等腰三角形的概率是__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長(zhǎng).20.(6分)計(jì)算:解不等式組,并寫出它的所有整數(shù)解.21.(6分)如圖,在中,,平分,交于點(diǎn),點(diǎn)在上,經(jīng)過兩點(diǎn),交于點(diǎn),交于點(diǎn).求證:是的切線;若的半徑是,是弧的中點(diǎn),求陰影部分的面積(結(jié)果保留和根號(hào)).22.(8分)如圖,⊙O的直徑DF與弦AB交于點(diǎn)E,C為⊙O外一點(diǎn),CB⊥AB,G是直線CD上一點(diǎn),∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請(qǐng)你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個(gè)補(bǔ)充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.23.(8分)為了解黔東南州某縣中考學(xué)生的體育考試得分情況,從該縣參加體育考試的4000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體育考試成績(jī)作樣本分析,得出如下不完整的頻數(shù)統(tǒng)計(jì)表和頻數(shù)分布直方圖.成績(jī)分組

組中值

頻數(shù)

25≤x<30

27.5

4

30≤x<35

32.5

m

35≤x<40

37.5

24

40≤x<45

a

36

45≤x<50

47.5

n

50≤x<55

52.5

4

(1)求a、m、n的值,并補(bǔ)全頻數(shù)分布直方圖;(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請(qǐng)問該縣中考體育成績(jī)優(yōu)秀學(xué)生人數(shù)約為多少?24.(10分)如圖,某反比例函數(shù)圖象的一支經(jīng)過點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達(dá)式.25.(10分)某種型號(hào)油電混合動(dòng)力汽車,從A地到B地燃油行駛需純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛需純用電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元.求每行駛1千米純用電的費(fèi)用;若要使從A地到B地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過39元,則至少需用電行駛多少千米?26.(12分)一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示:(1)甲乙兩地相距千米,慢車速度為千米/小時(shí).(2)求快車速度是多少?(3)求從兩車相遇到快車到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式.(4)直接寫出兩車相距300千米時(shí)的x值.27.(12分)如圖已知△ABC,點(diǎn)D是AB上一點(diǎn),連接CD,請(qǐng)用尺規(guī)在邊AC上求作點(diǎn)P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對(duì)各選項(xiàng)分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個(gè)單位得到y(tǒng)=3x2+2,故本選項(xiàng)錯(cuò)誤;B、y=3x2的圖象向右平移1個(gè)單位得到y(tǒng)=3(x﹣1)2,故本選項(xiàng)錯(cuò)誤;C、y=3x2的圖象向右平移1個(gè)單位,向上平移2個(gè)單位得到y(tǒng)=3(x﹣1)2+2,故本選項(xiàng)錯(cuò)誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項(xiàng)正確.故選D.2、D【解析】

分別求出兩組數(shù)據(jù)的中位數(shù)、平均數(shù)、方差,比較即可得出答案.【詳解】A組數(shù)據(jù)的中位數(shù)是:4,平均數(shù)是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數(shù)據(jù)的中位數(shù)是:3,平均數(shù)是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數(shù)據(jù)的中位數(shù)不相等,平均數(shù)相等,B組方差更大.故選D.【點(diǎn)睛】本題考查了中位數(shù)、平均數(shù)、方差的計(jì)算,熟練掌握中位數(shù)、平均數(shù)、方差的計(jì)算方法是解答本題的關(guān)鍵.3、B【解析】

根據(jù)折疊的性質(zhì)可知AE=DE=3,然后根據(jù)勾股定理求CD的長(zhǎng),然后利用正弦公式進(jìn)行計(jì)算即可.【詳解】解:由折疊性質(zhì)可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點(diǎn)睛】本題考查折疊的性質(zhì),勾股定理解直角三角形及正弦的求法,掌握公式正確計(jì)算是本題的解題關(guān)鍵.4、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時(shí)間少用了15分鐘,利用時(shí)間得出等式方程即可.詳解:設(shè)乘公交車平均每小時(shí)走x千米,根據(jù)題意可列方程為:.故選D.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個(gè)部分,列出方程即可.5、C【解析】

根據(jù)三角形的內(nèi)角和定理和三角形外角性質(zhì)進(jìn)行解答即可.【詳解】如圖:,,,,∴==,故選C.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、熟練掌握相關(guān)定理及性質(zhì)以及一副三角板中各個(gè)角的度數(shù)是解題的關(guān)鍵.6、D【解析】

根據(jù)相反數(shù)的定義求解即可.【詳解】的相反數(shù)是-,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的性質(zhì),在一個(gè)數(shù)的前面加上負(fù)號(hào)就是這個(gè)數(shù)的相反數(shù).7、C【解析】

解:中位數(shù)應(yīng)該是15和17的平均數(shù)16,故C選項(xiàng)錯(cuò)誤,其他選擇正確.故選C.【點(diǎn)睛】本題考查求中位數(shù),眾數(shù),方差,理解相關(guān)概念是本題的解題關(guān)鍵.8、A【解析】

根據(jù)三角形中位線定理判斷即可.【詳解】∵AD為△ABC的中線,點(diǎn)E為AC邊的中點(diǎn),

∴DC=BC,DE=AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=S△ABC,C一定成立;DE∥AB,D一定成立;故選A.【點(diǎn)睛】本題考查的是三角形中位線定理,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關(guān)鍵.9、D【解析】

根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗(yàn)次數(shù)的增加,穩(wěn)定在某一個(gè)固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎(jiǎng)的概率為1%”表示買100張彩票有可能中獎(jiǎng).故C不符合題意;D.“拋一枚正方體骰子,朝上的點(diǎn)數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點(diǎn)睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.10、B【解析】

找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個(gè)正方形,上面一層左邊有1個(gè)正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識(shí),左視圖是從物體的左面看得到的視圖.11、B【解析】

由矩形的性質(zhì)可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點(diǎn)D坐標(biāo).【詳解】解:∵四邊形ABCD是矩形

∴AB∥CD,AB=CD,AD=BC,AD∥BC,

∵A(1,4)、B(1,1)、C(5,1),

∴AB∥CD∥y軸,AD∥BC∥x軸

∴點(diǎn)D坐標(biāo)為(5,4)

故選B.【點(diǎn)睛】本題考查了矩形的性質(zhì),坐標(biāo)與圖形性質(zhì),關(guān)鍵是熟練掌握這些性質(zhì).12、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2+【解析】

試題分析:過P點(diǎn)作PE⊥AB于E,過P點(diǎn)作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據(jù)勾股定理得:PE=1,∵點(diǎn)A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【點(diǎn)睛】本題主要考查的就是垂徑定理的應(yīng)用以及直角三角形勾股定理的應(yīng)用,屬于中等難度的題型.解決這個(gè)問題的關(guān)鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個(gè)隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個(gè)條件的應(yīng)用也是很重要的.14、2【解析】

要求絲線的長(zhǎng),需將圓柱的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開,得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.∵圓柱底面的周長(zhǎng)為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長(zhǎng)最小為2AC=2cm.故答案為2.【點(diǎn)睛】本題考查了平面展開?最短路徑問題,圓柱的側(cè)面展開圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題就是把圓柱的側(cè)面展開成矩形,“化曲面為平面”,用勾股定理解決.15、2.5秒.【解析】

把此正方體的點(diǎn)A所在的面展開,然后在平面內(nèi),利用勾股定理求點(diǎn)A和B點(diǎn)間的線段長(zhǎng),即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長(zhǎng)等于5,另一條直角邊長(zhǎng)等于2,利用勾股定理可求得.【詳解】解:因?yàn)榕佬新窂讲晃ㄒ唬史智闆r分別計(jì)算,進(jìn)行大、小比較,再?gòu)母鱾€(gè)路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長(zhǎng)為5cm,用時(shí)最少:5÷2=2.5秒.【點(diǎn)睛】本題考查了勾股定理的拓展應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關(guān)鍵.16、(﹣2,2)【解析】試題分析:∵直線y=2x+4與y軸交于B點(diǎn),∴x=0時(shí),得y=4,∴B(0,4).∵以O(shè)B為邊在y軸右側(cè)作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點(diǎn)縱坐標(biāo)為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標(biāo)為(﹣2,2).考點(diǎn):2.一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;2.等邊三角形的性質(zhì);3.坐標(biāo)與圖形變化-平移.17、20【解析】分析:根據(jù)中位數(shù)的定義進(jìn)行計(jì)算即可得到這組數(shù)據(jù)的中位數(shù).詳解:由中位數(shù)的定義可知,這次跳繩次數(shù)的中位數(shù)是將這25位同學(xué)的跳繩次數(shù)按從小到大排列后的第12個(gè)和13個(gè)數(shù)據(jù)的平均數(shù),∵由表格中的數(shù)據(jù)分析可知,這組數(shù)據(jù)按從小到大排列后的第12個(gè)和第13個(gè)數(shù)據(jù)都是20,∴這組跳繩次數(shù)的中位數(shù)是20.故答案為:20.點(diǎn)睛:本題考查的是怎樣確定一組數(shù)據(jù)的中位數(shù),解題的關(guān)鍵是弄清“中位數(shù)”的定義:“把一組數(shù)據(jù)按從小到大的順序排列后,若數(shù)據(jù)組中共有奇數(shù)個(gè)數(shù)據(jù),則最中間一個(gè)數(shù)據(jù)是該組數(shù)據(jù)的中位數(shù);若數(shù)據(jù)組中數(shù)據(jù)的個(gè)數(shù)為偶數(shù)個(gè),則最中間兩個(gè)數(shù)據(jù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù)”.18、.【解析】

解:根據(jù)從C、D、E、F四個(gè)點(diǎn)中任意取一點(diǎn),一共有4種可能,選取D、C、F時(shí),所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點(diǎn)睛】本題考查概率的計(jì)算及等腰三角形的判定,熟記等要三角形的性質(zhì)及判定方法和概率的計(jì)算公式是本題的解題關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)CE=1.【解析】

(1)根據(jù)等角對(duì)等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得OE∥BC,根據(jù)兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.

(2)根據(jù)垂徑定理可求BH=BF=3,根據(jù)三個(gè)角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對(duì)邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長(zhǎng),從而求出CE的長(zhǎng).【詳解】(1)證明:如圖,連接OE,

∵OB=OE,

∴∠OBE=∠OEB,

∵BE平分∠ABC.

∴∠OBE=∠EBC,

∴∠OEB=∠EBC,

∴OE∥BC,

∵∠ACB=90°,

∴∠OEA=∠ACB=90°,

∴AC是⊙O的切線.

(2)解:過O作OH⊥BF,

∴BH=BF=3,四邊形OHCE是矩形,

∴CE=OH,

在Rt△OBH中,BH=3,OB=5,

∴OH==1,

∴CE=1.【點(diǎn)睛】本題考查切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線和垂徑定理以及勾股定理的運(yùn)用,具有一定的綜合性.20、(1);(1)0,1,1.【解析】

(1)本題涉及零指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值,在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果(1)先求出每個(gè)不等式的解集,再求出不等式組的解集,最后再找出整數(shù)解即可【詳解】解:(1)原式=1﹣1×,=7﹣.(1),解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式組的解集是:﹣1<x≤1.故不等式組的整數(shù)解是:0,1,1.【點(diǎn)睛】此題考查零指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值,一元一次不等式組的整數(shù)解,掌握運(yùn)算法則是解題關(guān)鍵21、(1)證明見解析;(2)【解析】

(1)連接OD,根據(jù)角平分線的定義和等腰三角形的性質(zhì)可得∠ADO=∠CAD,即可證明OD//AC,進(jìn)而可得∠ODB=90°,即可得答案;(2)根據(jù)圓周角定理可得弧弧弧,即可證明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的長(zhǎng),利用S陰影=S△BOD-S扇形DOE即可得答案.【詳解】(1)連接∵平分,∴,∵,∴,∴,∴OD//AC,∴,∴又是的半徑,∴是的切線(2)由題意得∵是弧的中點(diǎn)∴弧弧∵∴弧弧∴弧弧弧∴在中∵∴.【點(diǎn)睛】本題考查的是切線的判定、圓周角定理及扇形面積,要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可;在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都定義這條弧所對(duì)的圓心角的一半.熟練掌握相關(guān)定理及公式是解題關(guān)鍵.22、(1)見解析;(2)見解析.【解析】

連接AF,由直徑所對(duì)的圓周角是直角、同弧所對(duì)的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選?、偻瓿勺C明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【點(diǎn)睛】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識(shí).注意乘積的形式可以轉(zhuǎn)化為比例的形式,通過證明三角形相似得出.還要注意構(gòu)造直徑所對(duì)的圓周角是圓中的常見輔助線.23、(1)詳見解析(2)2400【解析】

(1)求出組距,然后利用37.5加上組距就是a的值;根據(jù)頻數(shù)分布直方圖即可求得m的值,然后利用總?cè)藬?shù)100減去其它各組的人數(shù)就是n的值.(2)利用總?cè)藬?shù)4000乘以優(yōu)秀的人數(shù)所占的比例即可求得優(yōu)秀的人數(shù).【詳解】解:(1)組距是:37.5﹣32.5=5,則a=37.5+5=42.5;根據(jù)頻數(shù)分布直方圖可得:m=12;則n=100﹣4﹣12﹣24﹣36﹣4=1.補(bǔ)全頻數(shù)分布直方圖如下:(2)∵優(yōu)秀的人數(shù)所占的比例是:=0.6,∴該縣中考體育成績(jī)優(yōu)秀學(xué)生人數(shù)約為:4000×0.6=2400(人)24、(1)y;(2)yx+1.【解析】

(1)把A的坐標(biāo)代入反比例函數(shù)的解析式即可求得;(2)作AD⊥BC于D,則D(2,b),即可利用a表示出AD的長(zhǎng),然后利用三角形的面積公式即可得到一個(gè)關(guān)于b的方程,求得b的值,進(jìn)而求得a的值,根據(jù)待定系數(shù)法,可得答案.【詳解】(1)由題意得:k=xy=2×3=6,∴反比例函數(shù)的解析式為y;(2)設(shè)B點(diǎn)坐標(biāo)為(a,b),如圖,作AD⊥BC于D,則D(2,b),∵反比例函數(shù)y的圖象經(jīng)過點(diǎn)B(a,b),∴b,∴AD=3,∴S△ABCBC?ADa(3)=6,解得a=6,∴b1,∴B(6,1),設(shè)AB的解析式為y=kx+b,將A(2,3),B(6,1)代入函數(shù)解析式,得,解得:,所以直線AB的解析式為yx+1.【點(diǎn)睛】本題考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)解析式,熟練掌握待定系數(shù)法以及正確表示出BC,AD的長(zhǎng)是解題的關(guān)鍵.25、(1)每行駛1千米純用電的費(fèi)用為0.26元.(2)至少需用電行駛74千米.【解析】

(1)根據(jù)某種型號(hào)油電混合動(dòng)力汽車,從A地到B地燃油行駛純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛純電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元,可以列出相應(yīng)的分式方程,然后解分式方程即可解答本題;(2)根據(jù)(1)中用電每千米的費(fèi)用和本問中的信息可以列出相應(yīng)的不等式,解不等式即可解答本題.【詳解】(1)設(shè)每行駛1千米純用電的費(fèi)用為x元,根據(jù)題意得:=解得:x=0.26經(jīng)檢驗(yàn),x=0.26是原分式方程的解,答:每行駛1千米純用電的費(fèi)用為0.26元;(2)從A地到B地油電混合行駛,用電行駛y千米,得:0.26y+(﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用電行駛74千米.26、(1)10,1;(2)快車速度是2千米/小時(shí);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論