陜西寶雞渭濱區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
陜西寶雞渭濱區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
陜西寶雞渭濱區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
陜西寶雞渭濱區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
陜西寶雞渭濱區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西寶雞渭濱區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列運(yùn)算正確的是()A.=2 B.4﹣=1 C.=9 D.=22.已知x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,下列結(jié)論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<03.如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°4.下列運(yùn)算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a65.下列關(guān)于x的方程中一定沒有實(shí)數(shù)根的是()A. B. C. D.6.如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為12,則PD+PE+PF=()A.12 B.8 C.4 D.37.如圖圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C. D.8.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴(kuò)大為原來的3倍,那么擴(kuò)大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元9.一個(gè)不透明的布袋里裝有5個(gè)紅球,2個(gè)白球,3個(gè)黃球,它們除顏色外其余都相同,從袋中任意摸出1個(gè)球,是黃球的概率為()A. B. C. D.10.如圖,已知△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,則cosA的值為()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點(diǎn)D,則∠DBC的度數(shù)是____________.12.關(guān)于x的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是▲.13.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點(diǎn)E,若⊙O的半徑是5,CD=8,則AE=______.14.如圖,已知△ABC和△ADE均為等邊三角形,點(diǎn)OAC的中點(diǎn),點(diǎn)D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.15.如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個(gè)菱形,容易知道當(dāng)兩張紙條垂直時(shí),菱形的周長有最小值8,那么菱形周長的最大值是_________.16.小紅沿坡比為1:的斜坡上走了100米,則她實(shí)際上升了_____米.三、解答題(共8題,共72分)17.(8分)如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),DF⊥AE于點(diǎn)F,求證:∠AEB=∠CDF.18.(8分)先化簡(jiǎn),再求值:,其中,.19.(8分)如圖,在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.求AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);甲、乙兩船分別從A,B兩港口同時(shí)出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時(shí)?20.(8分)從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對(duì)本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個(gè)主要觀點(diǎn):A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn));并制成了扇形統(tǒng)計(jì)圖(如圖).請(qǐng)回答以下問題:(1)該班學(xué)生選擇觀點(diǎn)的人數(shù)最多,共有人,在扇形統(tǒng)計(jì)圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是度.(2)利用樣本估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù).(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點(diǎn),如果班主任從該觀點(diǎn)中,隨機(jī)選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).21.(8分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長交直線AD于點(diǎn)E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時(shí),其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.22.(10分)某初級(jí)中學(xué)對(duì)畢業(yè)班學(xué)生三年來參加市級(jí)以上各項(xiàng)活動(dòng)獲獎(jiǎng)情況進(jìn)行統(tǒng)計(jì),七年級(jí)時(shí)有48人次獲獎(jiǎng),之后逐年增加,到九年級(jí)畢業(yè)時(shí)累計(jì)共有183人次獲獎(jiǎng),求這兩年中獲獎(jiǎng)人次的平均年增長率.23.(12分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點(diǎn)D是拋物線上的一動(dòng)點(diǎn),是否存在點(diǎn)D,使得tan∠DCB=tan∠ACO.若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),若不存在,說明理由.24.如圖,拋物線y=ax2+bx﹣2經(jīng)過點(diǎn)A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點(diǎn)D是直線AC上方的拋物線上的一點(diǎn),求△DCA面積的最大值;(3)P是拋物線上一動(dòng)點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)二次根式的性質(zhì)對(duì)A進(jìn)行判斷;根據(jù)二次根式的加減法對(duì)B進(jìn)行判斷;根據(jù)二次根式的除法法則對(duì)C進(jìn)行判斷;根據(jù)二次根式的乘法法則對(duì)D進(jìn)行判斷.【詳解】A、原式=2,所以A選項(xiàng)正確;B、原式=4-3=,所以B選項(xiàng)錯(cuò)誤;C、原式==3,所以C選項(xiàng)錯(cuò)誤;D、原式=,所以D選項(xiàng)錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算:先把二次根式化為最簡(jiǎn)二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.2、A【解析】分析:A、根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△>0,由此即可得出x1≠x2,結(jié)論A正確;B、根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=a,結(jié)合a的值不確定,可得出B結(jié)論不一定正確;C、根據(jù)根與系數(shù)的關(guān)系可得出x1?x2=﹣2,結(jié)論C錯(cuò)誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結(jié)論D錯(cuò)誤.綜上即可得出結(jié)論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結(jié)論A正確;B、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結(jié)論不一定正確;C、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結(jié)論C錯(cuò)誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結(jié)論D錯(cuò)誤.故選A.點(diǎn)睛:本題考查了根的判別式以及根與系數(shù)的關(guān)系,牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.3、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【詳解】∵將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點(diǎn)A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點(diǎn)睛】此題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.4、D【解析】

根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進(jìn)行計(jì)算即可.【詳解】A、(a2)5=a10,故原題計(jì)算錯(cuò)誤;B、(x﹣1)2=x2﹣2x+1,故原題計(jì)算錯(cuò)誤;C、3a2b和3ab2不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;D、a2?a4=a6,故原題計(jì)算正確;故選:D.【點(diǎn)睛】此題主要考查了冪的乘方、完全平方公式、合并同類項(xiàng)和同底數(shù)冪的乘法,關(guān)鍵是掌握各計(jì)算法則.5、B【解析】

根據(jù)根的判別式的概念,求出△的正負(fù)即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個(gè)不相等的實(shí)數(shù)根,B.,△=36-144=-1080,∴原方程沒有實(shí)數(shù)根,C.,,△=10,∴原方程有兩個(gè)不相等的實(shí)數(shù)根,D.,△=m2+80,∴原方程有兩個(gè)不相等的實(shí)數(shù)根,故選B.【點(diǎn)睛】本題考查了根的判別式,屬于簡(jiǎn)單題,熟悉根的判別式的概念是解題關(guān)鍵.6、C【解析】

過點(diǎn)P作平行四邊形PGBD,EPHC,進(jìn)而利用平行四邊形的性質(zhì)及等邊三角形的性質(zhì)即可.【詳解】延長EP、FP分別交AB、BC于G、H,則由PD∥AB,PE∥BC,PF∥AC,可得,四邊形PGBD,EPHC是平行四邊形,∴PG=BD,PE=HC,又△ABC是等邊三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等邊三角形,∴PF=PG=BD,PD=DH,又△ABC的周長為12,∴PD+PE+PF=DH+HC+BD=BC=×12=4,故選C.【點(diǎn)睛】本題主要考查了平行四邊形的判定及性質(zhì)以及等邊三角形的判定及性質(zhì),等邊三角形的性質(zhì):等邊三角形的三個(gè)內(nèi)角都相等,且都等于60°.7、B【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故A不正確;B、既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故B正確;C、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故C不正確;D、既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故D不正確.故選B.【點(diǎn)睛】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的概念,以及對(duì)軸對(duì)稱圖形和中心對(duì)稱圖形的認(rèn)識(shí).8、C【解析】

根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴(kuò)大后長方形廣告牌的面積,計(jì)算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴(kuò)大為原來的3倍,則面積擴(kuò)大為原來的9倍,∴擴(kuò)大后長方形廣告牌的面積=9×6=54m2,∴擴(kuò)大后長方形廣告牌的成本是54×20=1080元,故選C.【點(diǎn)睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.9、A【解析】

讓黃球的個(gè)數(shù)除以球的總個(gè)數(shù)即為所求的概率.【詳解】解:因?yàn)橐还?0個(gè)球,其中3個(gè)黃球,所以從袋中任意摸出1個(gè)球是黃球的概率是.

故選:A.【點(diǎn)睛】本題考查概率的基本計(jì)算,用到的知識(shí)點(diǎn)為:概率等于所求情況數(shù)與總情況數(shù)之比.10、D【解析】

過B點(diǎn)作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、15°【解析】分析:根據(jù)等腰三角形的性質(zhì)得出∠ABC的度數(shù),根據(jù)中垂線的性質(zhì)得出∠ABD的度數(shù),最后求出∠DBC的度數(shù).詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵M(jìn)N為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點(diǎn)睛:本題主要考查的是等腰三角形的性質(zhì)以及中垂線的性質(zhì)定理,屬于中等難度的題型.理解中垂線的性質(zhì)是解決這個(gè)問題的關(guān)鍵.412、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個(gè)不相等的實(shí)數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關(guān)于k的方程,解方程,結(jié)合一元二次方程的定義即可求解:∵有兩個(gè)不相等的實(shí)數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.13、2【解析】

連接OC,由垂徑定理知,點(diǎn)E是CD的中點(diǎn),在直角△OCE中,利用勾股定理即可得到關(guān)于半徑的方程,求得圓半徑即可【詳解】設(shè)AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點(diǎn)睛】此題考查垂徑定理和勾股定理,,解題的關(guān)鍵是利用勾股定理求關(guān)于半徑的方程.14、1【解析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當(dāng)OE⊥EC時(shí),OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點(diǎn)O是AC的中點(diǎn),∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當(dāng)OE⊥EC時(shí),OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運(yùn)用全等三角形的判定是本題的關(guān)鍵.15、1【解析】

畫出圖形,設(shè)菱形的邊長為x,根據(jù)勾股定理求出周長即可.【詳解】當(dāng)兩張紙條如圖所示放置時(shí),菱形周長最大,設(shè)這時(shí)菱形的邊長為xcm,

在Rt△ABC中,

由勾股定理:x2=(8-x)2+22,

解得:x=,∴4x=1,

即菱形的最大周長為1cm.

故答案是:1.【點(diǎn)睛】解答關(guān)鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據(jù)圖形列方程.16、50【解析】

根據(jù)題意設(shè)鉛直距離為x,則水平距離為,根據(jù)勾股定理求出x的值,即可得到結(jié)果.【詳解】解:設(shè)鉛直距離為x,則水平距離為,根據(jù)題意得:,解得:(負(fù)值舍去),則她實(shí)際上升了50米,故答案為:50【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,此題關(guān)鍵是用同一未知數(shù)表示出下降高度和水平前進(jìn)距離.三、解答題(共8題,共72分)17、見解析.【解析】

利用矩形的性質(zhì)結(jié)合平行線的性質(zhì)得出∠CDF+∠ADF=90°,進(jìn)而得出∠CDF=∠DAF,由AD∥BC,得出答案.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AD∥BC,∴∠CDF+∠ADF=90°,∵DF⊥AE于點(diǎn)F,∴∠DAF+∠ADF=90°,∴∠CDF=∠DAF.∵AD∥BC,∴∠DAF=∠AEB,∴∠AEB=∠CDF.【點(diǎn)睛】此題主要考查了矩形的性質(zhì)以及平行線的性質(zhì),正確得出∠CDF=∠DAF是解題關(guān)鍵.18、1【解析】分析:先把小括號(hào)內(nèi)的通分,按照分式的減法和分式的除法法則進(jìn)行化簡(jiǎn),再把字母的值代入運(yùn)算即可.詳解:原式

當(dāng)x=-1、y=2時(shí),

原式=-(-1)2+2×22

=-1+8

=1.點(diǎn)睛:本題主要考查分式的化簡(jiǎn)求值,解題的關(guān)鍵是掌握分式的混合運(yùn)算順序和運(yùn)算法則.19、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時(shí),乙船的速度是20海里/時(shí)【解析】

(1)過點(diǎn)P作PE⊥AB于點(diǎn)E,則有PE=30海里,由題意,可知∠PAB=30°,∠PBA=45°,從而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的長;(2)設(shè)乙船的速度是x海里/時(shí),則甲船的速度是1.2x海里/時(shí),根據(jù)甲船比乙船晚到小島24分鐘列出分式方程,求解后進(jìn)行檢驗(yàn)即可得.【詳解】(1)如圖,過點(diǎn)P作PE⊥MN,垂足為E,由題意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP==30≈42海里,故AP=60海里,BP=42(海里);(2)設(shè)乙船的速度是x海里/時(shí),則甲船的速度是1.2x海里/時(shí),根據(jù)題意,得,解得x=20,經(jīng)檢驗(yàn),x=20是原方程的解,甲船的速度為1.2x=1.2×20=24(海里/時(shí)).,答:甲船的速度是24海里/時(shí),乙船的速度是20海里/時(shí).【點(diǎn)睛】本題考查了勾股定理的應(yīng)用,分式方程的應(yīng)用,含30度角的直角三角形的性質(zhì),等腰直角三角形的判定與性質(zhì),熟練掌握各相關(guān)知識(shí)是解題的關(guān)鍵.20、(4)A高中觀點(diǎn).4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數(shù)乘以選擇“A高中”觀點(diǎn)的百分比即可得到選擇“A高中”觀點(diǎn)的人數(shù),用460°乘以選擇“A高中”觀點(diǎn)的百分比即可得到選擇“A高中”的觀點(diǎn)所在扇形區(qū)域的圓心角的度數(shù);(4)用全校初三年級(jí)學(xué)生數(shù)乘以選擇“B中技”觀點(diǎn)的百分比即可估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù);(4)先計(jì)算出該班選擇“就業(yè)”觀點(diǎn)的人數(shù)為4人,則可判斷有4位女同學(xué)和4位男生選擇“就業(yè)”觀點(diǎn),再列表展示44種等可能的結(jié)果數(shù),找出出現(xiàn)4女的結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(4)該班學(xué)生選擇A高中觀點(diǎn)的人數(shù)最多,共有60%×50=4(人),在扇形統(tǒng)計(jì)圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù)約是456人;(4)該班選擇“就業(yè)”觀點(diǎn)的人數(shù)=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學(xué)和4位男生選擇“就業(yè)”觀點(diǎn),列表如下:共有44種等可能的結(jié)果數(shù),其中出現(xiàn)4女的情況共有4種.所以恰好選到4位女同學(xué)的概率=212考點(diǎn):4.列表法與樹狀圖法;4.用樣本估計(jì)總體;4.扇形統(tǒng)計(jì)圖.21、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】

(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進(jìn)而可利用SAS證明△CQB≌△CPA,進(jìn)而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進(jìn)一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因?yàn)椤鱌EM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;

(3)連結(jié)CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計(jì)算、30°角的直角三角形的性質(zhì)等知識(shí),涉及的知識(shí)點(diǎn)多、綜合性強(qiáng),靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.22、25%【解析】

首先設(shè)這兩年中獲獎(jiǎng)人次的平均年增長率為x,則可得八年級(jí)的獲獎(jiǎng)人數(shù)為48(1+x),九年級(jí)的獲獎(jiǎng)人數(shù)為48(1+x)2;故根據(jù)題意可得48(1+x)2=183,即可求得x的值,即可求解本題.【詳解】設(shè)這兩年中獲獎(jiǎng)人次的平均年增長率為x,根據(jù)題意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合題意,舍去).答:這兩年中獲獎(jiǎng)人次的年平均年增長率為25%23、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點(diǎn)坐標(biāo)為(1,2)或(4,﹣25).【解析】

(1)設(shè)交點(diǎn)式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計(jì)算出AC=,BC=,接著利用面積法計(jì)算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n),證明Rt△BCH∽R(shí)t△ACO,利用相似計(jì)算出BH=,CH=,再根據(jù)兩點(diǎn)間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設(shè)拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當(dāng)x=0時(shí),y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽R(shí)t△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當(dāng)n=﹣時(shí),m=2n+=,此時(shí)H(,﹣),易得直線CD的解析式為y=﹣7x+3,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論