版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙麓山國際實驗學(xué)校2024屆數(shù)學(xué)高一下期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在ABC中,.則的取值范圍是()A.(0,] B.[,) C.(0,] D.[,)2.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值為()A.3 B.4 C.18 D.403.已知,為直線,,為平面,下列命題正確的是()A.若,,則B.若,,則與為異面直線C.若,,,則D.若,,,則4.已知是定義在上不恒為的函數(shù),且對任意,有成立,,令,則有()A.為等差數(shù)列 B.為等比數(shù)列C.為等差數(shù)列 D.為等比數(shù)列5.已知方程表示焦點在y軸上的橢圓,則m的取值范圍是()A. B. C. D.6.以下給出了4個命題:(1)兩個長度相等的向量一定相等;(2)相等的向量起點必相同;(3)若,且,則;(4)若向量的模小于的模,則.其中正確命題的個數(shù)共有()A.3個 B.2個 C.1個 D.0個7.已知向量,,,且,則實數(shù)的值為A. B. C. D.8.已知三條相交于一點的線段兩兩垂直且在同一平面內(nèi),在平面外、平面于,則垂足是的()A.內(nèi)心 B.外心 C.重心 D.垂心9.如圖:樣本A和B分別取自兩個不同的總體,他們的樣本平均數(shù)分別為和,樣本標(biāo)準(zhǔn)差分別為和,則()A.B.C.D.10.已知直線(3-2k)x-y-6=0不經(jīng)過第一象限,則k的取值范圍為()A.-∞,32 B.-∞,32二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于的方程只有一個實數(shù)根,則實數(shù)_____.12.的值為___________.13.已知函數(shù),則的取值范圍是____14.等腰直角中,,CD是AB邊上的高,E是AC邊的中點,現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為________.15.已知,,,若,則__________.16.在直角坐標(biāo)系中,已知任意角以坐標(biāo)原點為頂點,以軸的非負半軸為始邊,若其終邊經(jīng)過點,且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,為坐標(biāo)原點,已知向量,又點,,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.18.已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在區(qū)間的最大值和最小值.19.已知直線經(jīng)過兩條直線:和:的交點,直線:;(1)若,求的直線方程;(2)若,求的直線方程.20.如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.(1)求證:平面平面BCM;(2)當(dāng)四棱錐的體積最大時,求AM與CD所成的角.21.已知函數(shù)(1)求函數(shù)的反函數(shù);(2)解方程:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
試題分析:由于,根據(jù)正弦定理可知,故.又,則的范圍為.故本題正確答案為C.考點:三角形中正余弦定理的運用.2、C【解析】不等式所表示的平面區(qū)域如下圖所示,當(dāng)所表示直線經(jīng)過點時,有最大值考點:線性規(guī)劃.3、D【解析】
利用空間中線線、線面、面面間的位置關(guān)系對選項逐一判斷即可.【詳解】由,為直線,,為平面,知:在A中,若,,則與相交、平行或異面,故A錯誤;在B中,若,,則與相交、平行或異面,故B錯誤;在C中,若,,,則與相交、平行或異面,故C錯誤;在D中,若,,,則由線面垂直、面面平行的性質(zhì)定理得,故D正確.故選:D.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,屬于基礎(chǔ)題.4、C【解析】令,得到得到,.,說明為等差數(shù)列,故C正確,根據(jù)選項,排除A,D.∵.顯然既不是等差也不是等比數(shù)列.故選C.5、B【解析】
利用橢圓的性質(zhì)列出不等式求解即可.【詳解】方程1表示焦點在y軸上的橢圓,可得,解得1<m.則m的取值范圍為:(1,).故選B.【點睛】本題考查橢圓的方程及簡單性質(zhì)的應(yīng)用,基本知識的考查.6、D【解析】
利用向量的概念性質(zhì)和向量的數(shù)量積對每一個命題逐一分析判斷得解.【詳解】(1)兩個長度相等的向量不一定相等,因為它們可能方向不同,所以該命題是錯誤的;(2)相等的向量起點不一定相同,只要它們方向相同長度相等就是相等向量,所以該命題是錯誤的;(3)若,且,則是錯誤的,舉一個反例,如,不一定相等,所以該命題是錯誤的;(4)若向量的模小于的模,則,是錯誤的,因為向量不能比較大小,因為向量既有大小又有方向,故該命題不正確.故選:D【點睛】本題主要考查向量的概念和數(shù)量積的計算,意在考查學(xué)生對這些知識的理解掌握水平.7、A【解析】
求出的坐標(biāo),由得,得到關(guān)于的方程.【詳解】,,因為,所以,故選A.【點睛】本題考查向量減法和數(shù)量積的坐標(biāo)運算,考查運算求解能力.8、D【解析】
根據(jù)題意,結(jié)合線線垂直推證線面垂直,以及根據(jù)線面垂直推證線線垂直,即可求解?!驹斀狻窟B接BH,延長BH與AC相交于E,連接AH,延長AH交BC于D,作圖如下:因為,故平面PBC,又平面PBC,故;因為平面ABC,平面ABC,故;又平面PAH,平面PAH故平面PAH,又平面PAH,故,即;同理可得:,又BE與AD交于點H,故H點為的垂心.故選:D.【點睛】本題考查線線垂直與線面垂直之間的相互轉(zhuǎn)化,屬綜合中檔題.9、B【解析】
從圖形中可以看出樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,由此得到結(jié)論.【詳解】∵樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,,由圖可知A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,.故選B.10、D【解析】
由題意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范圍.【詳解】直線y=(3﹣2k)x﹣6不經(jīng)過第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3則k的取值范圍是[32故選:D.【點睛】本題考查直線方程的運用,注意運用直線的斜率為0的情況,考查運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先從方程看是不能直接解出這個方程的根的,因此可以轉(zhuǎn)化成函數(shù),從函數(shù)的奇偶性出發(fā)?!驹斀狻吭O(shè),則∴為偶函數(shù),其圖象關(guān)于軸對稱,又依題意只有一個零點,故此零點只能是,所以,∴,∴,∴,∴,故答案為:【點睛】本題主要考查了函數(shù)奇偶性以及零點與方程的關(guān)系,方程的根就是對應(yīng)函數(shù)的零點,本題屬于基礎(chǔ)題。12、【解析】
=13、【解析】
分類討論,去掉絕對值,利用函數(shù)的單調(diào)性,求得函數(shù)各段上的取值,進而得到函數(shù)的取值范圍,得到答案.【詳解】由題意,當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,此時函數(shù)的取值當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,最小值,所以函數(shù)的取值為當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞增函數(shù),所以最大值為,此時函數(shù)的取值,綜上可知,函數(shù)的取值范圍是.【點睛】本題主要考查了分段函數(shù)的值域問題,其中解答中合理分類討論去掉絕對值,利用函數(shù)的單調(diào)性求得各段上的值域是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解析】
取的中點,連接,則與所成角即為與所成角,根據(jù)已知可得,,可以判斷三角形為等邊三角形,進而求出異面直線直線DE與AB所成角.【詳解】取的中點,連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【點睛】本題考查立體幾何中的翻折問題,考查了異面直線所成的角,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.15、-3【解析】由可知,解得,16、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點:三角函數(shù)的概念.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)當(dāng)時的值域為.時的值域為.【解析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結(jié)合向量與向量共線,常數(shù),建立的表達式,代入,對分類討論,綜合三角函數(shù)和二次函數(shù)的圖象與性質(zhì),即可求出值域.詳解:(1),∵,且,∴,,解得,時,;時,.∴向量或.(2),∵向量與向量共線,常數(shù),∴,∴.①當(dāng)即時,當(dāng)時,取得最大值,時,取得最小值,此時函數(shù)的值域為.②當(dāng)即時,當(dāng)時,取得最大值,時,取得最小值,此時函數(shù)的值域為.綜上所述,當(dāng)時的值域為.時的值域為.點睛:本題考查了向量的坐標(biāo)運算、向量垂直和共線的定理、模的計算、三角函數(shù)的值域等問題,考查了分類討論方法、推理與計算能力.18、(1),;(2),【解析】
(1)直接利用三角函數(shù)的恒等變換,把三角函數(shù)變形成正弦型函數(shù).進一步求出函數(shù)的單調(diào)區(qū)間.(2)直接利用三角函數(shù)的定義域求出函數(shù)的最值.【詳解】解:(1)令,解得,即函數(shù)的單調(diào)遞增區(qū)間為,(2)由(1)知所以當(dāng),即時,當(dāng),即時,【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的單調(diào)性的應(yīng)用,利用函數(shù)的定義域求三角函數(shù)的值域.屬于基礎(chǔ)型.19、(1);(2)【解析】
(1)先求出與的交點,再利用兩直線平行斜率相等求直線l(2)利用兩直線垂直斜率乘積等于-1求直線l【詳解】(1)由,得,∴與的交點為.設(shè)與直線平行的直線為,則,∴.∴所求直線方程為.(2)設(shè)與直線垂直的直線為,則,解得.∴所求直線方程為.【點睛】兩直線平行斜率相等,兩直線垂直斜率乘積等于-1.20、(1)證明見解析(2)【解析】
(1)只證明CM⊥平面ADM即可,即證明CM垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDM⊥平面ABCD,而M是以CD為直徑的半圓周上一點,能夠得到CM⊥DM,由面面垂直的性質(zhì)即可證明;(2)當(dāng)四棱錐M一ABCD的體積最大時,M為半圓周中點處,可得角MAB就是AM與CD所成的角,利用已知即可求解.【詳解】(1)證明:CD為直徑,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)當(dāng)M為半圓弧CD的中點時,四棱錐的體積最大,此時,過點M作MOCD于點E,平面CDM平面ABCDMO平面ABCD,即MO為四棱錐的高又底面ABCD面積為定值2,AM與CD所成的角即AM與AB所成的角,求得,三角形為正三角形,,故AM與CD所成的角為【點睛】本題主要考查異面直線成的角,面面垂直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《心臟康復(fù)培訓(xùn)》課件
- 小學(xué)一年級20以內(nèi)加減法混合運算
- 小學(xué)五年級數(shù)學(xué)小數(shù)乘除法計算練習(xí)題 集
- 二年級上冊21 雪孩子(教案)
- 2025年1月內(nèi)蒙古自治區(qū)普通高等學(xué)校招生考試適應(yīng)性測試(八省聯(lián)考)歷史試題
- 《新地產(chǎn)營銷新機會》課件
- 混凝土路面施工協(xié)議書
- 口腔科護士的工作總結(jié)
- 育人為本點滴栽培班主任工作總結(jié)
- 浴室用品銷售工作總結(jié)
- 2024年領(lǐng)導(dǎo)干部任前廉政知識考試測試題庫及答案
- 中醫(yī)辨證-八綱辨證(中醫(yī)學(xué)課件)
- 冠脈介入進修匯報
- 蔣詩萌小品《誰殺死了周日》臺詞完整版
- 生涯發(fā)展展示
- 報價單(報價單模板)
- 整改回復(fù)書樣板后邊附帶圖片
- 先進物流理念主導(dǎo)和先進物流技術(shù)支撐下的日本現(xiàn)代物流
- 建筑小區(qū)生雨水排水系統(tǒng)管道的水力計算
- 公務(wù)員職務(wù)和級別工資檔次套改及級別對應(yīng)表
- 社會團體選舉辦法
評論
0/150
提交評論