版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省巢湖市柘皋中學(xué)2024屆數(shù)學(xué)高一下期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或32.兩條直線和,,在同一直角坐標(biāo)系中的圖象可能是()A. B.C. D.3.在中,角A、B、C所對(duì)的邊分別為a、b、c,且若,則的形狀是()A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形4.在等差數(shù)列中,已知,數(shù)列的前5項(xiàng)的和為,則()A. B. C. D.5.一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都乘以3,再減去30,得到一組新數(shù)據(jù),若求得新數(shù)據(jù)的平均數(shù)是3.6,方差是9.9,則原來(lái)數(shù)據(jù)的平均數(shù)和方差分別是()A.11.2,1.1 B.33.6,9.9 C.11.2,9.9 D.24.1,1.16.下列函數(shù)的最小值為的是()A. B.C. D.7.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.8.在正方體中,、分別是棱和的中點(diǎn),為上底面的中心,則直線與所成的角為()A.30° B.45° C.60° D.90°9.已知點(diǎn)是直線上一動(dòng)點(diǎn)、是圓的兩條切線,、是切點(diǎn),若四邊形的最小面積是,則的值為()A. B. C. D.10.已知角的終邊經(jīng)過(guò)點(diǎn),則()A. B. C.-2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,經(jīng)過(guò)三點(diǎn)(0,0),(1,1),(2,0)的圓的方程為_(kāi)_________.12.的化簡(jiǎn)結(jié)果是_________.13.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.14.已知cosθ,θ∈(π,2π),則sinθ=_____,tan_____.15.已知函數(shù),的最小正周期是___________.16.不等式的解集為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,,點(diǎn)D在邊AB上,,且.(1)若的面積為,求CD;(2)設(shè),若,求證:.18.年月日是第二十七屆“世界水日”,月日是第三十二屆“中國(guó)水周”.我國(guó)紀(jì)念年“世界水日”和“中國(guó)水周”活動(dòng)的宣傳主題為“堅(jiān)持節(jié)水優(yōu)先,強(qiáng)化水資源管理”.某中學(xué)課題小組抽取、兩個(gè)小區(qū)各戶家庭,記錄他們?cè)路莸挠盟浚▎挝唬海┤缦卤恚盒^(qū)家庭月用水量小區(qū)家庭月用水量(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個(gè)小區(qū)居民節(jié)水意識(shí)更好?(2)從用水量不少于的家庭中,、兩個(gè)小區(qū)各隨機(jī)抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.19.已知數(shù)列滿足.證明數(shù)列為等差數(shù)列;求數(shù)列的通項(xiàng)公式.20.如圖,在四棱錐中,,且,,,點(diǎn)在上,且.(1)求證:平面⊥平面;(2)求證:直線∥平面.21.如圖,在直四棱柱中,底面為菱形,為中點(diǎn).(1)求證:平面;(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)直線的平行關(guān)系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗(yàn),當(dāng)或時(shí),兩條直線均平行.故選:D【點(diǎn)睛】此題考查根據(jù)直線平行關(guān)系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.2、A【解析】
由方程得出直線的截距,逐個(gè)選項(xiàng)驗(yàn)證即可.【詳解】由截距式方程可得直線的橫、縱截距分別為,直線的橫、縱截距分別為選項(xiàng)A,由的圖象可得,可得直線的截距均為正數(shù),故A正確;選項(xiàng)B,只有當(dāng)時(shí),才有直線平行,故B錯(cuò)誤;選項(xiàng)C,只有當(dāng)時(shí),才有直線的縱截距相等,故C錯(cuò)誤;選項(xiàng)D,由的圖象可得,可得直線的橫截距為正數(shù),縱截距為負(fù)數(shù),由圖像不對(duì)應(yīng),故D錯(cuò)誤;故選:A【點(diǎn)睛】本題考查了直線的截距式方程,需理解截距的定義,屬于基礎(chǔ)題.3、C【解析】
直接利用余弦定理的應(yīng)用求出A的值,進(jìn)一步利用正弦定理得到:b=c,最后判斷出三角形的形狀.【詳解】在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且b2+c2=a2+bc.則:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC為等邊三角形.故選C.【點(diǎn)睛】本題考查了正弦定理和余弦定理及三角形面積公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.4、C【解析】
由,可求出,結(jié)合,可求出及.【詳解】設(shè)數(shù)列的前項(xiàng)和為,公差為,因?yàn)?,所以,則,故.故選C.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和,考查了等差數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.5、A【解析】
根據(jù)新數(shù)據(jù)所得的均值與方差,結(jié)合數(shù)據(jù)分析中的公式,即可求得原來(lái)數(shù)據(jù)的平均數(shù)和方差.【詳解】設(shè)原數(shù)據(jù)為則新數(shù)據(jù)為所以由題意可知,則,解得,故選:A.【點(diǎn)睛】本題考查了數(shù)據(jù)處理與簡(jiǎn)單應(yīng)用,平均數(shù)與方差公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.6、C【解析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時(shí)顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點(diǎn)睛:本題考查基本不等式,考查通過(guò)給變量取特殊值,舉反例來(lái)說(shuō)明某個(gè)命題不正確,是一種簡(jiǎn)單有效的方法.7、A【解析】
根據(jù)圖象求出即可得到函數(shù)解析式.【詳解】顯然,因?yàn)椋?,所以,由得,所以,即,,因?yàn)?,所以,所?故選:A【點(diǎn)睛】本題考查了根據(jù)圖象求函數(shù)解析式,利用周期求,代入最高點(diǎn)的坐標(biāo)求是解題關(guān)鍵,屬于基礎(chǔ)題.8、A【解析】
先通過(guò)平移將兩條異面直線平移到同一個(gè)起點(diǎn),得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.【詳解】解:先畫(huà)出圖形,將平移到,為直線與所成的角,設(shè)正方體的邊長(zhǎng)為,,,,,,故選:.【點(diǎn)睛】本題主要考查了異面直線及其所成的角,以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】
作出圖形,可知,由四邊形的最小面積是,可知此時(shí)取最小值,由勾股定理可知的最小值為,即圓心到直線的距離為,結(jié)合點(diǎn)到直線的距離公式可求出的值.【詳解】如下圖所示,由切線長(zhǎng)定理可得,又,,且,,所以,四邊形的面積為面積的兩倍,圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,四邊形的最小面積是,所以,面積的最小值為,又,,由勾股定理,當(dāng)直線與直線垂直時(shí),取最小值,即,整理得,,解得.故選:D.【點(diǎn)睛】本題考查由四邊形面積的最值求參數(shù)的值,涉及直線與圓的位置關(guān)系的應(yīng)用,解題的關(guān)鍵就是確定動(dòng)點(diǎn)的位置,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.10、B【解析】按三角函數(shù)的定義,有.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:由題意利用待定系數(shù)法求解圓的方程即可.詳解:設(shè)圓的方程為,圓經(jīng)過(guò)三點(diǎn)(0,0),(1,1),(2,0),則:,解得:,則圓的方程為.點(diǎn)睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過(guò)程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理.如:①圓心在過(guò)切點(diǎn)且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時(shí),切點(diǎn)與兩圓心三點(diǎn)共線.(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個(gè)獨(dú)立參數(shù),所以應(yīng)該有三個(gè)獨(dú)立等式.12、【解析】原式,因?yàn)?,所以,且,所以原式?3、【解析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點(diǎn):圓錐的體積與面積公式,圓錐的性質(zhì).14、﹣2.【解析】
由題意利用同角三角函數(shù)的基本關(guān)系,二倍角公式,求得式子的值.【詳解】由,,知,則,.故答案為:,.【點(diǎn)睛】本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
先化簡(jiǎn)函數(shù)f(x),再利用三角函數(shù)的周期公式求解.【詳解】由題得,所以函數(shù)的最小正周期為.故答案為【點(diǎn)睛】本題主要考查和角的正切和正切函數(shù)的周期的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.16、【解析】
根據(jù)一元二次不等式的解法直接求解可得結(jié)果.【詳解】由得:即不等式的解集為故答案為:【點(diǎn)睛】本題考查一元二次不等式的求解問(wèn)題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)證明見(jiàn)解析【解析】
(1)直接利用三角形的面積公式求得,再由余弦定理列方程求出結(jié)果;(2)兩次利用正弦定理,結(jié)合兩角差的正弦公式、二倍角的正弦公式進(jìn)行恒等變換求出結(jié)果.【詳解】(1)因?yàn)?即,又因?yàn)?,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因?yàn)?,則,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化簡(jiǎn)得展開(kāi)并整理得【點(diǎn)睛】以三角形為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對(duì)三角函數(shù)及解三角形進(jìn)行考查是近幾年高考考查的一類熱點(diǎn)問(wèn)題,一般難度不大,但綜合性較強(qiáng).解答這類問(wèn)題,兩角和與差的正余弦公式、誘導(dǎo)公式以及二倍角公式,一定要熟練掌握并靈活應(yīng)用,特別是二倍角公式的各種變化形式要熟記于心.18、(1)見(jiàn)解析(2)【解析】
(1)根據(jù)表格中的數(shù)據(jù)繪制出莖葉圖,并結(jié)合莖葉圖中數(shù)據(jù)的分布可比較出兩個(gè)小區(qū)居民節(jié)水意識(shí);(2)列舉出所有的基本事件,確定所有的基本事件數(shù),然后確定事件“小區(qū)家庭的用水量低于小區(qū)”所包含的基本事件數(shù),利用古典概型的概率公式可計(jì)算出事件“小區(qū)家庭的用水量低于小區(qū)”的概率.【詳解】(1)繪制如下莖葉圖:由以上莖葉圖可以看出,小區(qū)月用水量有的葉集中在莖、上,而小區(qū)月用水量有的葉集中在莖、上,由此可看出小區(qū)居民節(jié)水意識(shí)更好;(2)從用水量不少于的家庭中,、兩個(gè)小區(qū)各隨機(jī)抽取一戶的結(jié)果:、、、、、、、,共個(gè)基本事件,小區(qū)家庭的用水量低于小區(qū)的的結(jié)果:、、,共個(gè)基本事件.所以,小區(qū)家庭的用水量低于小區(qū)的概率是.【點(diǎn)睛】本題考查莖葉圖的繪制與應(yīng)用,以及利用古典概型計(jì)算事件的概率,考查收集數(shù)據(jù)與處理數(shù)據(jù)的能力,考查計(jì)算能力,屬于中等題.19、(1)見(jiàn)解析;(2)【解析】
(1)已知遞推關(guān)系取倒數(shù),利用等差數(shù)列的定義,即可證明.(2)由(1)可知數(shù)列為等差數(shù)列,確定數(shù)列的通項(xiàng)公式,即可求出數(shù)列的通項(xiàng)公式.【詳解】證明:,且有,,又,,即,且,是首項(xiàng)為1,公差為的等差數(shù)列.解:由知,即,所以.【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系、等差數(shù)列的判斷方法,考查了運(yùn)用取倒數(shù)法求數(shù)列的通項(xiàng)公式,考查了推理能力和計(jì)算能力,屬于中檔題.20、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)通過(guò)邊長(zhǎng)關(guān)系可知,所以,又,所以平面,所以平面平面.(2)連接交與點(diǎn),連接,易得∽,所以,所以直線平面.,【詳解】(1)因?yàn)?,,所以,所以又,且,平面,平面所以平面又平面所以平面平面?)連接交與點(diǎn),連接在四邊形中,,∽,所以又,即所以又直線平面,直線平面所以直線平面【點(diǎn)睛】(1)證明面面垂直:先正線面垂直,線又屬于另一個(gè)面,即可證明面面垂直.(2)證
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 節(jié)能建筑室內(nèi)空氣質(zhì)量控制施工考核試卷
- 異黃樟素污染源及風(fēng)險(xiǎn)評(píng)估-洞察分析
- 2023年-2024年員工三級(jí)安全培訓(xùn)考試題及答案全套
- 2023年企業(yè)主要負(fù)責(zé)人安全培訓(xùn)考試題附答案(研優(yōu)卷)
- 無(wú)人機(jī)物流系統(tǒng)設(shè)計(jì)-洞察分析
- 2023年-2024年員工三級(jí)安全培訓(xùn)考試題含答案【能力提升】
- 數(shù)組并行計(jì)算方法-洞察分析
- 語(yǔ)言學(xué)習(xí)效果評(píng)估體系構(gòu)建-洞察分析
- 語(yǔ)音內(nèi)容自動(dòng)化處理-洞察分析
- 施工組織設(shè)計(jì)中關(guān)于安全及文明施工措施
- 美團(tuán)外賣運(yùn)營(yíng)知識(shí)試題
- 航空概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 業(yè)務(wù)流程可視化改善
- 期末復(fù)(知識(shí)清單)2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 45001-2020職業(yè)健康安全管理體系危險(xiǎn)源識(shí)別與風(fēng)險(xiǎn)評(píng)價(jià)及應(yīng)對(duì)措施表(各部門)
- 人教版六年級(jí)科學(xué)重點(diǎn)知識(shí)點(diǎn)
- 春節(jié):藝術(shù)的盛宴
- 煙草公司化肥采購(gòu)項(xiàng)目-化肥投標(biāo)文件(技術(shù)方案)
- 【良品鋪?zhàn)映杀究刂浦写嬖诘膯?wèn)題及優(yōu)化建議探析(定量論文)11000字】
- 2023八年級(jí)語(yǔ)文上冊(cè) 第三單元 13 唐詩(shī)五首說(shuō)課稿 新人教版
- 2024至2030年中國(guó)青年旅舍行業(yè)發(fā)展監(jiān)測(cè)及投資戰(zhàn)略研究報(bào)告
評(píng)論
0/150
提交評(píng)論