泰州市海陵區(qū)重點中學2024屆中考沖刺卷數(shù)學試題含解析_第1頁
泰州市海陵區(qū)重點中學2024屆中考沖刺卷數(shù)學試題含解析_第2頁
泰州市海陵區(qū)重點中學2024屆中考沖刺卷數(shù)學試題含解析_第3頁
泰州市海陵區(qū)重點中學2024屆中考沖刺卷數(shù)學試題含解析_第4頁
泰州市海陵區(qū)重點中學2024屆中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

泰州市海陵區(qū)重點中學2024屆中考沖刺卷數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°

B.75°或15°

C.105°或15°

D.75°或105°2.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數(shù)據(jù):)A.30.6米 B.32.1米 C.37.9米 D.39.4米3.下列計算錯誤的是()A.a(chǎn)?a=a2 B.2a+a=3a C.(a3)2=a5 D.a(chǎn)3÷a﹣1=a44.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④5.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.256.弘揚社會主義核心價值觀,推動文明城市建設.根據(jù)“文明創(chuàng)建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結果如下表:人數(shù)2341分數(shù)80859095則得分的眾數(shù)和中位數(shù)分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.57.下列二次根式中,最簡二次根式是()A. B. C. D.8.已知m=,n=,則代數(shù)式的值為()A.3 B.3 C.5 D.99.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.10.在如圖所示的數(shù)軸上,點B與點C關于點A對稱,A、B兩點對應的實數(shù)分別是和﹣1,則點C所對應的實數(shù)是()A.1+ B.2+ C.2﹣1 D.2+1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結論:∽;;;其中正確的結論有______.12.已知(x、y、z≠0),那么的值為_____.13.已知:a(a+2)=1,則a2+=_____.14.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當時,隨值的增大而增大;⑤當時,.其中,正確的說法有________(請寫出所有正確說法的序號).15.已知A(0,3),B(2,3)是拋物線上兩點,該拋物線的頂點坐標是_________.16.拋物線y=x2﹣2x+3的對稱軸是直線_____.17.已知點M(1,2)在反比例函數(shù)y=k三、解答題(共7小題,滿分69分)18.(10分)如圖1,圖2分別是某款籃球架的實物圖與示意圖,已知底座BC=1.5米,底座BC與支架AC所成的角∠ACB=60°,支架AF的長為2.50米,籃板頂端F點到籃筐D的距離FD=1.3米,籃板底部支架HE與支架AF所成的角∠FHE=45°,求籃筐D到地面的距離.(精確到0.01米參考數(shù)據(jù):≈1.73,≈1.41)19.(5分)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點為F,F(xiàn)H∥BC,連結AF交BC于E,∠ABC的平分線BD交AF于D,連結BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.20.(8分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;21.(10分)定義:如果把一條拋物線繞它的頂點旋轉180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達式;(2)若拋物線y=x2﹣2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P點的坐標;若不存在,說明理由.22.(10分)某校為了解本校學生每周參加課外輔導班的情況,隨機調(diào)査了部分學生一周內(nèi)參加課外輔導班的學科數(shù),并將調(diào)查結果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學科,B:1個學科,C:2個學科,D:3個學科,E:4個學科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是個學科;若該校共有2000名學生,根據(jù)以上調(diào)查結果估計該校全體學生一周內(nèi)參加課外輔導班在3個學科(含3個學科)以上的學生共有人.23.(12分)如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿與地面仍保持垂直的關系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測得米,塔高米.在某一時刻的太陽照射下,未折斷樹桿落在地面的影子長為米,且點、、、在同一條直線上,點、、也在同一條直線上.求這棵大樹沒有折斷前的高度.(結果精確到,參考數(shù)據(jù):,,).24.(14分)已知.(1)化簡A;(2)如果a,b是方程的兩個根,求A的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關鍵,注意分情況討論思想的運用.2、D【解析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.3、C【解析】

解:A、a?a=a2,正確,不合題意;B、2a+a=3a,正確,不合題意;C、(a3)2=a6,故此選項錯誤,符合題意;D、a3÷a﹣1=a4,正確,不合題意;故選C.【點睛】本題考查冪的乘方與積的乘方;合并同類項;同底數(shù)冪的乘法;負整數(shù)指數(shù)冪.4、A【解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.5、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據(jù)等腰三角形的性質(zhì)得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質(zhì);三角形三邊關系.6、A【解析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),可得答案.解:在這一組數(shù)據(jù)中90是出現(xiàn)次數(shù)最多的,故眾數(shù)是90;排序后處于中間位置的那個數(shù),那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是87.5;故選:A.“點睛”本題考查了眾數(shù)、中位數(shù)的知識,掌握各知識點的概念是解答本題的關鍵.注意中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).7、C【解析】

檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.8、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關鍵.9、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.10、D【解析】

設點C所對應的實數(shù)是x.根據(jù)中心對稱的性質(zhì),對稱點到對稱中心的距離相等,則有,解得.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設AE=a,AB=b,則AD=2a,根據(jù)△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.12、1【解析】解:由(x、y、z≠0),解得:x=3z,y=2z,原式===1.故答案為1.點睛:本題考查了分式的化簡求值和解二元一次方程組,難度適中,關鍵是先用z把x與y表示出來再進行代入求解.13、3【解析】

先根據(jù)a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點睛】本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關鍵.14、①②④【解析】

根據(jù)拋物線的對稱軸判斷①,根據(jù)拋物線與x軸的交點坐標判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點坐標為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當x>1時,y隨x值的增大而增大,④正確;當y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.15、(1,4).【解析】試題分析:把A(0,3),B(2,3)代入拋物線可得b=2,c=3,所以=,即可得該拋物線的頂點坐標是(1,4).考點:拋物線的頂點.16、x=1【解析】

把解析式化為頂點式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對稱軸是直線x=1,故答案為x=1.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).17、-2【解析】k==1×(-2)=-2三、解答題(共7小題,滿分69分)18、3.05米【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到正確結論.【詳解】解:如圖:延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan60°=1.5×1.73=2.595,∴GM=AB=2.595,在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,∴sin45°=,∴FG=1.76,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.【點睛】本題主要考查直角三角形和三角函數(shù),構造合適的輔助線是本題解題的關鍵.19、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=20、1【解析】

原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值計算即可得到結果.【詳解】原式=4-1+2-+=1.【點睛】此題考查了實數(shù)的運算,絕對值,零指數(shù)冪、負整數(shù)指數(shù)冪,以及特殊角的三角函數(shù)值,熟練掌握運算法則是解本題的關鍵.21、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】

(1)當拋物線繞其頂點旋轉180°后,拋物線的頂點坐標不變,只是開口方向相反,則可根據(jù)頂點式寫出旋轉后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點坐標C、C′,由點的坐標可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當AC為對角線時,由中點坐標可知點P不存在,當AC為邊時,分兩種情況可求得點P的坐標.【詳解】(1)拋物線y=x2-2x化為頂點式為y=(x-1)2-1,頂點坐標為(1,-1),由于拋物線y=x2-2x繞其頂點旋轉180°后拋物線的頂點坐標不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點為D的坐標為(1,c-1),與y軸的交點C的坐標為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點C’的坐標為(0,c-2),∴CC'=c-(c-2)=2,∵點D的橫坐標為1,∴∠CDC'=90°,由對稱性質(zhì)可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點C,與x軸正半軸的交點為A,令x=0,y=-3,令y=0時,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點坐標為(,?),設P(a,-a2+2a-5),∵A、C、P、Q為頂點的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實數(shù)解,∴此時滿足條件的點P不存在,若AC為平行四邊形的邊,點P在y軸右側,則AP∥CQ且AP=CQ,∵點C和點Q在y軸上,∴點P的橫坐標為3,把x=3代入“孿生拋物線”的解析式y(tǒng)=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點P在y軸左側,則AQ∥CP且AQ=CP,∴點P的橫坐標為-3,把x=-3代入“孿生拋物線”的解析式y(tǒng)=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點P1(3,-8),P2(-3,-20),在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.【點睛】本題是二次函數(shù)綜合題型,主此題主要考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論