版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則下列說法正確的是()A.圖像的對稱中心是B.在定義域內(nèi)是增函數(shù)C.是奇函數(shù)D.圖像的對稱軸是2.空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)是()A. B.C. D.3.在,,,是邊上的兩個動點,且,則的取值范圍為()A. B. C. D.4.已知向量,則與的夾角為()A. B. C. D.5.若實數(shù)滿足不等式組,則的最小值是()A. B.0 C.1 D.26.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P﹣ABCD為陽馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點,則異面直線AB與CE所成角的正弦值為()A. B. C. D.7.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.118.已知三個內(nèi)角、、的對邊分別是,若,則等于()A. B. C. D.9.在中,,,則的形狀是()A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定10.設(shè)直線l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1與A.-16 B.0或二、填空題:本大題共6小題,每小題5分,共30分。11.若,則________.12.福利彩票“雙色球”中紅色球由編號為01,02,…,33的33個個體組成,某彩民利用下面的隨機(jī)數(shù)表(下表是隨機(jī)數(shù)表的第一行和第二行)選取6個紅色球,選取方法是從隨機(jī)數(shù)表中第1行的第6列和第7列數(shù)字開始,由左到右依次選取兩個數(shù)字,則選出來的第3個紅色球的編號為______.4954435482173793232887352056438426349164572455068877047447672176335025839212067613.在公比為q的正項等比數(shù)列{an}中,a3=9,則當(dāng)3a2+a4取得最小值時,=_____.14.按照如圖所示的程序框圖,若輸入的x值依次為,0,1,運(yùn)行后,輸出的y值依次為,,,則________.15.計算:________16.在中,已知,則下列四個不等式中,正確的不等式的序號為____________①②③④三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進(jìn)行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進(jìn)行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)18.如圖,在四棱錐中,平面平面,四邊形為矩形,,點,分別是,的中點.求證:(1)直線∥平面;(2)平面平面.19.某醫(yī)學(xué)院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?參考公式:回歸直線的方程,其中,.20.如圖所示,經(jīng)過村莊有兩條夾角為的公路,根據(jù)規(guī)劃要在兩條公路之間的區(qū)域內(nèi)修建一工廠,分別在兩條公路邊上建兩個倉庫(異于村莊),要求(單位:千米),記.(1)將用含的關(guān)系式表示出來;(2)如何設(shè)計(即為多長時),使得工廠產(chǎn)生的噪聲對居民影響最?。垂S與村莊的距離最大)?21.已知數(shù)列的前項和,函數(shù)對任意的都有,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)正切函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】.,由得,,的對稱中心為,,故正確;.在定義域內(nèi)不是增函數(shù),故錯誤;.為非奇非偶函數(shù),故錯誤;.的圖象不是軸對稱圖形,故錯誤.故選.【點睛】本題考查了正切函數(shù)的圖象與性質(zhì),考查了整體思想,意在考查學(xué)生對這些知識的理解掌握水平,屬基礎(chǔ)題.2、A【解析】
關(guān)于軸對稱,縱坐標(biāo)不變,橫坐標(biāo)、豎坐標(biāo)變?yōu)橄喾磾?shù).【詳解】關(guān)于軸對稱的兩點的縱坐標(biāo)相同,橫坐標(biāo)、豎坐標(biāo)均互為相反數(shù).所以點關(guān)于軸對稱的點的坐標(biāo)是.故選:A.【點睛】本題考查空間平面直角坐標(biāo)系,考查關(guān)于坐標(biāo)軸、坐標(biāo)平面對稱的問題.屬于基礎(chǔ)題.3、A【解析】由題意,可以點為原點,分別以為軸建立平面直角坐標(biāo)系,如圖所示,則點的坐標(biāo)分別為,直線的方程為,不妨設(shè)點的坐標(biāo)分別為,,不妨設(shè),由,所以,整理得,則,即,所以當(dāng)時,有最小值,當(dāng)時,有最大值.故選A.點睛:此題主要考查了向量數(shù)量積的坐標(biāo)運(yùn)算,以及直線方程和兩點間距離的計算等方面的知識與技能,還有坐標(biāo)法的運(yùn)用等,屬于中高檔題,也是??伎键c.根據(jù)題意,把運(yùn)動(即的位置在變)中不變的因素()找出來,通過坐標(biāo)法建立合理的直角坐標(biāo)系,把點的坐標(biāo)表示出來,再通過向量的坐標(biāo)運(yùn)算,列出式子,討論其最值,從而問題可得解.4、D【解析】
根據(jù)題意,由向量數(shù)量積的計算公式可得cosθ的值,據(jù)此分析可得答案.【詳解】設(shè)與的夾角為θ,由、的坐標(biāo)可得||=5,||=3,?5×0+5×(﹣3)=﹣15,故,所以.故選D【點睛】本題考查向量數(shù)量積的坐標(biāo)計算,涉及向量夾角的計算,屬于基礎(chǔ)題.5、A【解析】
畫出不等式組的可行域,再根據(jù)線性規(guī)劃的方法,結(jié)合的圖像與的關(guān)系判定最小值即可.【詳解】畫出可行域,又求最小值時,故的圖形與可行域有交點,且往上方平移到最高點處.易得此時在處取得最值.故選:A【點睛】本題主要考查了線性規(guī)劃與絕對值函數(shù)的綜合運(yùn)用,需要根據(jù)題意畫圖,根據(jù)函數(shù)的圖形性質(zhì)分析.屬于中檔題.6、B【解析】
由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、A【解析】
由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.8、D【解析】
根據(jù)正弦定理把邊化為對角的正弦求解.【詳解】【點睛】本題考查正弦定理,邊角互換是正弦定理的重要應(yīng)用,注意增根的排除.9、C【解析】
利用余弦定理求出,再利用余弦定理求得的值,即可判斷三角形的形狀.【詳解】在中,,解得:;∵,∵,,∴是直角三角形.故選:C.【點睛】本題考查余弦定理的應(yīng)用、三角形形狀的判定,考查邏輯推理能力和運(yùn)算求解能力.10、B【解析】
通過兩條直線平行的關(guān)系,可建立關(guān)于a的方程,解方程求得結(jié)果?!驹斀狻縧1//解得:a=0或-本題正確選項:B【點睛】本題考察直線位置關(guān)系問題。關(guān)鍵是通過兩直線平行,得到:A1二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
觀察式子特征,直接寫出,即可求出?!驹斀狻坑^察的式子特征,明確各項關(guān)系,以及首末兩項,即可寫出,所以,相比,增加了后兩項,少了第一項,故?!军c睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,正確弄清式子特征是解題關(guān)鍵。12、05【解析】
根據(jù)給定的隨機(jī)數(shù)表的讀取規(guī)則,從第一行第6、7列開始,兩個數(shù)字一組,從左向右讀取,重復(fù)的或超出編號范圍的跳過,即可.【詳解】根據(jù)隨機(jī)數(shù)表,排除超過33及重復(fù)的編號,第一個編號為21,第二個編號為32,第三個編號05,故選出來的第3個紅色球的編號為05.【點睛】本題主要考查了簡單隨機(jī)抽樣中的隨機(jī)數(shù)表法,屬于容易題.13、【解析】
利用等比數(shù)列的性質(zhì),結(jié)合基本不等式等號成立的條件,求得公比,由此求得的值.【詳解】∵在公比為q的正項等比數(shù)列{an}中,a3=9,根據(jù)等比數(shù)列的性質(zhì)和基本不等式得,當(dāng)且僅當(dāng),即,即q時,3a2+a4取得最小值,∴l(xiāng)og3q=log3.故答案為:【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.14、5【解析】
根據(jù)程序框圖依次計算出、、后即可得解.【詳解】由程序框圖可知,;,;,.所以.故答案為:.【點睛】本題考查了程序框圖的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
用正弦、正切的誘導(dǎo)公式化簡求值即可.【詳解】.【點睛】本題考查了正弦、正切的誘導(dǎo)公式,考查了特殊角的正弦值和正切值.16、②③【解析】
根據(jù),分當(dāng)和兩種情況分類討論,每一類中利用正、余弦函數(shù)的單調(diào)性判斷,特別注意,當(dāng)時,.【詳解】當(dāng)時,在上是增函數(shù),因為,所以,因為在上是減函數(shù),且,所以,當(dāng)時,且,因為在上是減函數(shù),所以,而,所以.故答案為:②③【點睛】本題主要考查了正弦函數(shù)與余弦函數(shù)的單調(diào)性在三角形中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)線性回歸方程是可靠的.【解析】
(1)用列舉法求出基本事件數(shù),計算所求的概率值;(2)由已知數(shù)據(jù)求得與,則線性回歸方程可求;(3)利用回歸方程計算與8時的值,再由已知數(shù)據(jù)作差取絕對值,與1比較大小得結(jié)論.【詳解】解:(1)設(shè)“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,從5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數(shù)據(jù)求得,,且,.代入公式得:,.線性回歸方程為:;(3)當(dāng)時,,,當(dāng)時,,.故得到的線性回歸方程是可靠的.【點睛】本題考查了線性回歸方程的求法與應(yīng)用問題,考查古典概型的概率計算問題,屬于中檔題.18、(1)見解析(2)見解析【解析】
(1)取中點,連接,,證得,利用線面平行的判定定理,即可證得直線∥平面;(2)利用線面垂直的判定定理,證得,再利用面面垂直的判定定理,即可得到平面平面.【詳解】(1)取中點,連接,.在中,,分別為,中點,則且,又四邊形為矩形,為中點,且,所以,故四邊形為平行四邊形,從而,又,,所以直線.(2)因為矩形,所以,又平面,面,,所以,又,則,又,,所以,又,所以平面平面.【點睛】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、(1)(2)該協(xié)會所得線性回歸方程是理想的【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù)求出x,y的平均數(shù),根據(jù)求線性回歸系數(shù)的方法,求出系數(shù),把和,代入公式,求出的值,寫出線性回歸方程;(2)根據(jù)所求的線性回歸方程,預(yù)報當(dāng)自變量為10和6時的值,把預(yù)報的值同原來表中所給的10和6對應(yīng)的值作差,差的絕對值不超過2,得到線性回歸方程理想.試題解析:解:(Ⅰ)由數(shù)據(jù)求得,,,由公式求得,所以,所以關(guān)于的線性回歸方程為.(Ⅱ)當(dāng)時,,;同樣,當(dāng)時,,.所以,該協(xié)會所得線性回歸方程是理想的.點睛:求線性回歸方程的步驟:(1)先把數(shù)據(jù)制成表,從表中計算出的值;(2)計算回歸系數(shù);(3)寫出線性回歸方程.進(jìn)行線性回歸分析時,要先畫出散點圖確定兩變量具有線性相關(guān)關(guān)系,然后利用公式求回歸系數(shù),得到回歸直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鑄件生產(chǎn)工藝協(xié)議
- 贈品選購合同指南
- 權(quán)威編寫原材料采購合同
- 出租車公司協(xié)議
- 戶外鞋銷售合同
- 真皮皮帶購銷合同
- 人才服務(wù)合同簽訂注意事項與建議
- 互聯(lián)網(wǎng)公司采購合同的簽訂技巧
- 購銷合同的簽訂要求
- 橋梁工程勞務(wù)分包協(xié)議書
- 中國當(dāng)代文學(xué)專題-003-國開機(jī)考復(fù)習(xí)資料
- 預(yù)防校園欺凌主題班會課件(共36張課件)
- 品三國論領(lǐng)導(dǎo)藝術(shù)智慧樹知到期末考試答案2024年
- 24春國家開放大學(xué)《教育心理學(xué)》終結(jié)性考核參考答案
- 基于PLC的熱水箱恒溫控制系統(tǒng)
- 金屬風(fēng)管支架重量計算表
- 浙美版1-6年級美術(shù)作品與作者整理
- 義務(wù)教育《勞動》課程標(biāo)準(zhǔn)(2022年版)
- 高標(biāo)準(zhǔn)基本農(nóng)田土地整治項目工程施工費(fèi)預(yù)算表
- 300KW并網(wǎng)電站方案
- 高速公路施工安全布控圖
評論
0/150
提交評論