2024屆云南省昭通市三中數(shù)學高一下期末綜合測試模擬試題含解析_第1頁
2024屆云南省昭通市三中數(shù)學高一下期末綜合測試模擬試題含解析_第2頁
2024屆云南省昭通市三中數(shù)學高一下期末綜合測試模擬試題含解析_第3頁
2024屆云南省昭通市三中數(shù)學高一下期末綜合測試模擬試題含解析_第4頁
2024屆云南省昭通市三中數(shù)學高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆云南省昭通市三中數(shù)學高一下期末綜合測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設P是所在平面內(nèi)的一點,,則()A. B. C. D.2.給出函數(shù)為常數(shù),且,,無論a取何值,函數(shù)恒過定點P,則P的坐標是A. B. C. D.3.在中,,,成等差數(shù)列,,則的形狀為()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等邊三角形4.甲、乙、丙、丁4名田徑選手參加集訓,將挑選一人參加400米比賽,他們最近10次測試成績的平均數(shù)和方差如下表;根據(jù)表中數(shù)據(jù),應選哪位選手參加比賽更有機會取得好成績?()甲乙丙丁平均數(shù)59575957方差12121010A.甲 B.乙 C.丙 D.丁5.已知數(shù)列滿足,為其前項和,則不等式的的最大值為()A.7 B.8 C.9 D.106.設、滿足約束條件,則的最大值為()A. B.C. D.7.將函數(shù)的圖像向右平衡個單位長度,再把圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)的最大值為 B.函數(shù)的最小正周期為C.函數(shù)的圖象關于直線對稱 D.函數(shù)在區(qū)間上單調(diào)遞增8.若且,則下列不等式成立的是()A. B. C. D.9.已知向量,滿足:則A. B. C. D.10.若直線與平面相交,則()A.平面內(nèi)存在無數(shù)條直線與直線異面B.平面內(nèi)存在唯一的一條直線與直線平行C.平面內(nèi)存在唯一的一條直線與直線垂直D.平面內(nèi)的直線與直線都相交二、填空題:本大題共6小題,每小題5分,共30分。11.在正方體中,是棱的中點,則異面直線與所成角的余弦值為__________.12.如圖,直三棱柱中,,,,外接球的球心為О,點E是側(cè)棱上的一個動點.有下列判斷:①直線AC與直線是異面直線;②一定不垂直;③三棱錐的體積為定值;④的最小值為⑤平面與平面所成角為其中正確的序號為_______13.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________14.已知,,且,則__________.15.已知數(shù)列的通項公式,,前項和達到最大值時,的值為______.16.函數(shù)的圖象在點處的切線方程是,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角,,的對邊分別為,,.且滿足.(Ⅰ)求角;(Ⅱ)若的面積為,,求邊.18.已知函數(shù),.(I)求函數(shù)的最小正周期.(II)求函數(shù)的單調(diào)遞增區(qū)間.(III)求函數(shù)在區(qū)間上的最小值和最大值.19.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.20.已知向量,滿足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.21.如圖所示,在平行四邊形ABCD中,若,,.(1)若,求的值;(2)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】移項得.故選B2、D【解析】試題分析:因為恒過定點,所以函數(shù)恒過定點.故選D.考點:指數(shù)函數(shù)的性質(zhì).3、B【解析】

根據(jù)等差中項以及余弦定理即可.【詳解】因為,,成等差數(shù)列,得為直角三角形為等腰直角三角形,所以選擇B【點睛】本題主要考查了等差中項和余弦定理,若為等差數(shù)列,則,屬于基礎題.4、D【解析】

由平均數(shù)及方差綜合考慮得結論.【詳解】解:由四位選手的平均數(shù)可知,乙與丁的平均速度快;再由方差越小發(fā)揮水平越穩(wěn)定,可知丙與丁穩(wěn)定,故應選丁選手參加比賽更有機會取得好成績.故選:.【點睛】本題考查平均數(shù)與方差,熟記結論是關鍵,屬于基礎題.5、B【解析】

由題意,整理得出是一個首項為12,公比為的等比數(shù)列,從而求出,再求出其前項和,然后再求出的表達式,再代入數(shù)驗證出的最大值即可.【詳解】由可得,即,所以數(shù)列是等比數(shù)列,又,所以,故,解得,(),所以的最大值為8.選B.【點睛】本題考查數(shù)列的遞推式以及數(shù)列求和的方法分組求和,屬于數(shù)列中的綜合題,考查了轉(zhuǎn)化的思想,構造的意識,本題難度較大,思維能力要求高.6、C【解析】

作出不等式組所表示的可行域,平移直線,觀察直線在軸上的截距最大時對應的最優(yōu)解,再將最優(yōu)解代入目標函數(shù)可得出結果.【詳解】作出不等式組所表示的可行域如下圖中的陰影部分區(qū)域表示:聯(lián)立,得,可得點的坐標為.平移直線,當該直線經(jīng)過可行域的頂點時,直線在軸上的截距最大,此時取最大值,即,故選:C.【點睛】本題考查簡單線性規(guī)劃問題,一般作出可行域,利用平移直線結合在坐標軸上的截距取最值來取得,考查數(shù)形結合思想的應用,屬于中等題.7、C【解析】

根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得到g(x)的解析式,再利用正弦函數(shù)的圖象性質(zhì),得出結論.【詳解】將函數(shù)的圖象向右平移個單位長度,可得y=2sin(2x)的圖象,再把圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)g(x)=2sin(x)的圖象,故g(x)的最大值為2,故A錯誤;顯然,g(x)的最小正周期為2π,故B錯誤;當時,g(x)=,是最小值,故函數(shù)g(x)的圖象關于直線對稱,故C正確;在區(qū)間上,x∈[,],函數(shù)g(x)=2sin(x)單調(diào)遞減,故D錯誤,故選:C.【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象性質(zhì)應用,屬于基礎題.8、D【解析】

利用作差法對每一個選項逐一判斷分析.【詳解】選項A,所以a≥b,所以該選項錯誤;選項B,,符合不能確定,所以該選項錯誤;選項C,,符合不能確定,所以該選項錯誤;選項D,,所以,所以該選項正確.故選D【點睛】本題主要考查實數(shù)大小的比較,意在考查學生對該知識的理解掌握水平和分析推理能力.9、D【解析】

利用向量的數(shù)量積運算及向量的模運算即可求出.【詳解】∵||=3,||=2,|+|=4,∴|+|2=||2+||2+2=16,∴2=3,∴|﹣|2=||2+||2﹣2=9+4﹣3=10,∴|﹣|=,故選D.【點睛】本題考查了向量的數(shù)量積運算和向量模的計算,屬于基礎題.10、A【解析】

根據(jù)空間中直線與平面的位置關系,逐項進行判定,即可求解.【詳解】由題意,直線與平面相交,對于A中,平面內(nèi)與無交點的直線都與直線異面,所以有無數(shù)條,正確;對于B中,平面內(nèi)的直線與要么相交,要么異面,不可能平行,所以,錯誤;對于C中,平面內(nèi)有無數(shù)條平行直線與直線垂直,所以,錯誤;對于D中,由A知,D錯誤.故選A.【點睛】本題主要考查了直線與平面的位置關系的應用,其中解答中熟記直線與平面的位置關系,合理判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

假設正方體棱長,根據(jù)//,得到異面直線與所成角,計算,可得結果.【詳解】假設正方體棱長為1,因為//,所以異面直線與所成角即與所成角則角為如圖,所以故答案為:【點睛】本題考查異面直線所成的角,屬基礎題.12、①③④⑤【解析】

由異面直線的概念判斷①;利用線面垂直的判定與性質(zhì)判斷②;找出球心,由棱錐底面積與高為定值判斷③;設,列出關于的函數(shù)關系式,結合其幾何意義,求出最小值判斷④;由面面成角的定義判斷⑤【詳解】對于①,因為直線經(jīng)過平面內(nèi)的點,而直線在平面內(nèi),且不過點,所以直線與直線是異面直線,故①正確;對于②,當點所在的位置滿足時,又,,平面,所以平面,又平面,所以,故②錯誤;對于③,由題意知,直三棱柱的外接球的球心是與的交點,則的面積為定值,由平面,所以點到平面的距離為定值,所以三棱錐的體積為定值,故③正確;對于④,設,則,所以,由其幾何意義,即直角坐標平面內(nèi)動點與兩定點,距離和的最小值知,其最小值為,故④正確;對于⑤,由直棱柱可知,,,則即為平面與平面所成角,因為,,所以,故⑤正確;綜上,正確的有①③④⑤,故答案為:①③④⑤【點睛】本題考查異面直線的判定,考查面面成角,考查線線垂直的判定,考查轉(zhuǎn)化思想13、【解析】

通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關系求得球的體積.【詳解】作出相關圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【點睛】本題主要考查圓錐體積與球體積的相關計算,建立體積等量關系是解決本題的關鍵,意在考查學生的劃歸能力,計算能力和分析能力.14、【解析】

根據(jù)向量平行的坐標表示可求得;代入兩角和差正切公式即可求得結果.【詳解】本題正確結果:【點睛】本題考查兩角和差正切公式的應用,涉及到向量平行的坐標表示,屬于基礎題.15、或【解析】

令,求出的取值范圍,即可得出達到最大值時對應的值.【詳解】令,解得,因此,當或時,前項和達到最大值.故答案為:或.【點睛】本題考查等差數(shù)列前項和最值的求解,可以利用關于的二次函數(shù),由二次函數(shù)的基本性質(zhì)求得,也可以利用等差數(shù)列所有非正項或非負項相加即得,考查計算能力,屬于基礎題.16、【解析】由導數(shù)的幾何意義可知,又,所以.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由正弦定理,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關系式化簡已知等式可得,結合范圍,可得.(Ⅱ)由已知利用三角形的面積公式可得:,進而根據(jù)余弦定理可得的值.【詳解】(Ⅰ)由得:∴∴又∴,即.又,∴(Ⅱ)∵的面積為,∴∴又,∴,即【點睛】本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關系式,三角形的面積公式,余弦定理在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想.18、(I)的最小正周期;(II)的單調(diào)遞增區(qū)間為;(III);【解析】試題分析;(1)化函數(shù)f(x)為正弦型函數(shù),求出f(x)的最小正周期;(2)根據(jù)正弦函數(shù)的單調(diào)性求出f(x)的單調(diào)增區(qū)間;(3)根據(jù)x的取值范圍求出2x+的取值范圍,從而求出f(x)的最值(I)因此,函數(shù)的最小正周期.(II)由得:.即函數(shù)的單調(diào)遞增區(qū)間為.(III)因為所以所以19、(1);(2)【解析】

(1)由二倍角公式,并結合輔助角公式可得,再利用周期可求出答案;(2)由的范圍,可求得的范圍,進而可求出的范圍,從而可求得的值域.【詳解】(1),∴函數(shù)的最小正周期為.(2)∵,∴,∴,∴,∴函數(shù)在區(qū)間的值域為.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的周期及值域,考查學生的計算求解能力,屬于基礎題.20、(Ⅰ)=2(Ⅱ)【解析】

(I)計算,結合兩向量的??傻?;(II)利用,把求模轉(zhuǎn)化為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論