版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆河南省信陽市數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.經(jīng)過原點且傾斜角為的直線被圓C:截得的弦長是,則圓在軸下方部分與軸圍成的圖形的面積等于()A. B. C. D.2.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.3.若,則下列不等式成立的是A. B. C. D.4.在四邊形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共線,則四邊形ABCD為()A.平行四邊形 B.矩形 C.梯形 D.菱形5.已知分別為內(nèi)角的對邊,若,b=則=()A. B. C. D.6.一個平面截一球得到直徑為6的圓面,球心到這個圓面的距離為4,則這個球的體積為()A. B. C. D.7.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位8.甲:(是常數(shù))乙:丙:(、是常數(shù))丁:(、是常數(shù)),以上能成為數(shù)列是等差數(shù)列的充要條件的有幾個()A.1 B.2 C.3 D.49.下列正確的是()A.若a,b∈R,則B.若x<0,則x+≥-2=-4C.若ab≠0,則D.若x<0,則2x+2-x>210.在中,,BC邊上的高等于,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列滿足,則__________.12.已知扇形的圓心角,扇形的面積為,則該扇形的弧長的值是______.13.圓與圓的公共弦長為________.14.住在同一城市的甲、乙兩位合伙人,約定在當(dāng)天下午4.00-5:00間在某個咖啡館相見商談合作事宜,他們約好當(dāng)其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________.15.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.16.設(shè)滿足約束條件,則的最小值為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)().(1)若在區(qū)間上的值域為,求實數(shù)的值;(2)在(1)的條件下,記的角所對的邊長分別為,若,的面積為,求邊長的最小值;(3)當(dāng),時,在答題紙上填寫下表,用五點法作出的圖像,并寫出它的單調(diào)遞增區(qū)間.018.已知圓C:(x-1)2(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程;(2)當(dāng)弦AB被點P平分時,寫出直線l的方程19.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.20.已知數(shù)列滿足,.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為,求使不等式<對一切恒成立的實數(shù)的范圍.21.(1)計算(2)已知,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由已知利用垂徑定理求得,得到圓的半徑,畫出圖形,由扇形面積減去三角形面積求解.【詳解】解:直線方程為,圓的圓心坐標(biāo)為,半徑為.圓心到直線的距離.則,解得.圓的圓心坐標(biāo)為,半徑為1.如圖,,則,.,,圓在軸下方部分與軸圍成的圖形的面積等于.故選:.【點睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查扇形面積的求法,考查計算能力,屬于中檔題.2、B【解析】
根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進(jìn)行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.3、C【解析】
利用的單調(diào)性直接判斷即可?!驹斀狻恳驗樵谏线f增,又,所以成立。故選:C【點睛】本題主要考查了冪函數(shù)的單調(diào)性,屬于基礎(chǔ)題。4、C【解析】∵=++=-8a-2b=2,與不平行,∴四邊形ABCD為梯形.5、D【解析】
由已知利用正弦定理可求的值,根據(jù)余弦定理可得,解方程可得的值.【詳解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,負(fù)值舍去.故選.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了方程思想,屬于基礎(chǔ)題.6、C【解析】
過球心作垂直圓面于.連接與圓面上一點構(gòu)造出直角三角形再計算球的半徑即可.【詳解】如圖,過球心作垂直圓面于,連接與圓面上一點.則.故球的體積為.故選:C【點睛】本題主要考查了球中構(gòu)造直角三角形求解半徑的方法等.屬于基礎(chǔ)題.7、A【解析】
函數(shù)過代入解得,再通過平移得到的圖像.【詳解】,函數(shù)過向右平移個單位得到的圖象故答案選A【點睛】本題考查了三角函數(shù)圖形,求函數(shù)表達(dá)式,函數(shù)平移,意在考查學(xué)生對于三角函數(shù)圖形的理解.8、D【解析】
由等差數(shù)列的定義和求和公式、通項公式的關(guān)系,以及性質(zhì),即可得到結(jié)論.【詳解】數(shù)列是等差數(shù)列,設(shè)公差為,由定義可得(是常數(shù)),且(是常數(shù)),,令,即(、是常數(shù)),等差數(shù)列通項,令,即(、是常數(shù)),綜上可得甲乙丙丁都對.故選:D.【點睛】本題考查等差數(shù)列的定義和通項公式、求和公式的關(guān)系,考查充分必要條件的定義,考查推理能力,屬于基礎(chǔ)題.9、D【解析】對于A,當(dāng)ab<0時不成立;對于B,若x<0,則x+=-≤-2=-4,當(dāng)且僅當(dāng)x=-2時,等號成立,因此B選項不成立;對于C,取a=-1,b=-2,+=-<a+b=-3,所以C選項不成立;對于D,若x<0,則2x+2-x>2成立.故選D.10、D【解析】試題分析:設(shè)邊上的高線為,則,所以.由正弦定理,知,即,解得,故選D.【考點】正弦定理【方法點撥】在平面幾何圖形中求相關(guān)的幾何量時,需尋找各個三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個三角形,然后選用正弦定理與余弦定理求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
數(shù)列為以為首項,1為公差的等差數(shù)列?!驹斀狻恳驗樗杂炙詳?shù)列為以為首項,1為公差的等差數(shù)列。所以所以故填【點睛】本題考查等差數(shù)列,屬于基礎(chǔ)題。12、【解析】
先結(jié)合求出,再由求解即可【詳解】由,則故答案為:【點睛】本題考查扇形的弧長和面積公式的使用,屬于基礎(chǔ)題13、【解析】
先求出公共弦方程為,再求出弦心距后即可求解.【詳解】兩圓方程相減可得公共弦直線方程為,圓的圓心為,半徑為,圓心到的距離為,公共弦長為.故答案為:.【點睛】本題考查了圓的一般方程以及直線與圓位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘).則相見需要滿足:畫出圖像,根據(jù)幾何概型公式得到答案.【詳解】根據(jù)題意:將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘)則相見需要滿足:畫出圖像:根據(jù)幾何概型公式:【點睛】本題考查了幾何概型的應(yīng)用,意在考查學(xué)生解決問題的能力.15、10【解析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.16、-1【解析】
由約束條件作出可行域,由圖得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),數(shù)形結(jié)合得答案.【詳解】由x,y滿足約束條件作出可行域如圖,由圖可知,目標(biāo)函數(shù)的最優(yōu)解為A,聯(lián)立,解得A(﹣1,1).∴z=3x﹣2y的最小值為﹣3×1﹣2×1=﹣1.故答案為:﹣1.【點睛】本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)填表見解析,作圖見解析,().【解析】
(1)利用二倍角公式和輔助角公式可把化簡為,再求出的范圍后根據(jù)正弦函數(shù)的性質(zhì)可得關(guān)于的方程組,解方程組可得它們的值.(2)先求出,再根據(jù)面積求出,最后根據(jù)余弦定理和基本不等式可求的最小值.(3)根據(jù)五點法直接作出圖像,再根據(jù)正弦函數(shù)的性質(zhì)可得函數(shù)的單調(diào)增區(qū)間.【詳解】,當(dāng)時,,則.因為,所以,解得,即.(2)由,得,又的面積為,所以,即,所以,當(dāng)且僅當(dāng)時,.(3)由題意得,填表0111作圖如下圖:由得(),所以函數(shù)的單調(diào)遞增區(qū)間是().【點睛】本題考查正弦型函數(shù)在給定范圍上的最值、余弦定理、三角形中的面積公式、正弦型函數(shù)的圖像與單調(diào)性以及基本不等式,本題綜合性較高,為中檔題.18、(1);(2)【解析】(1)已知圓C:(x-1)2(2)當(dāng)弦AB被點P平分時,l⊥PC,直線l的方程為y-2=-119、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結(jié)合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可求解;方法2:由正弦定理可得,,并將其代入可得,然后再化簡,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求得面積的最大值.【詳解】解:(I)因為,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以當(dāng)且僅當(dāng)時取等號,所以△ABC面積的最大值為方法2:因為,所以,,所以,所以,當(dāng)且僅當(dāng),即,當(dāng)時取等號.所以△ABC面積的最大值為.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.20、(1)見解析,;(2)【解析】
(1)對遞推式兩邊取倒數(shù)化簡,即可得出,利用等差數(shù)列的通項公式得出,再得出;(2)由(1)得,再使用裂項相消法求出,使用不等式得出的范圍,從而得出的范圍.【詳解】(1)∵,兩邊取倒數(shù),∴,即,又,∴數(shù)列是以1為首項,2為公差的等差數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 動物園內(nèi)部裝修工裝施工合同
- 醫(yī)院秩序維護(hù)保安招聘合同
- 地質(zhì)工程專業(yè)教師聘用合同
- 跨國公司通信網(wǎng)絡(luò)搭建合同
- 廣告牌安裝室外施工協(xié)議
- 智能醫(yī)療安防施工合同
- 太陽能弱電系統(tǒng)安裝合同
- 電子商務(wù)平臺品牌授權(quán)管理
- 4S店聘用合同范本
- 影視制作代銷協(xié)議書模板
- 圓錐曲線的光學(xué)性質(zhì)及其應(yīng)用-(3)-PPT課件
- 三年級上冊語文期中質(zhì)量分析
- 滾珠絲杠基礎(chǔ)知識ppt課件
- (完整版)鋼結(jié)構(gòu)質(zhì)量通病及防治措施
- (高清正版)JJG 342-2014 凝膠色譜儀
- 潛孔鉆安全的操作規(guī)程
- 印刷品供貨總體服務(wù)方案
- 新生兒聽力篩查PPT幻燈片課件
- 招投標(biāo)業(yè)務(wù)工作失誤檢討書
- 網(wǎng)吧公司章程范本
- 同一溶質(zhì)不同濃度溶液混合濃度判斷
評論
0/150
提交評論