版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省金華一中2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集,集合,則A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)2.某校從高一年級學(xué)生中隨機抽取部分學(xué)生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學(xué)生600名,據(jù)此估計,該模塊測試成績不少于60分的學(xué)生人數(shù)為()A.588 B.480 C.450 D.1203.已知集合,,則()A. B.C. D.4.實數(shù)數(shù)列為等比數(shù)列,則()A.-2 B.2 C. D.5.在△ABC中,a=3,b=5,sinA=13A.15 B.59 C.6.若關(guān)于的不等式的解集為,則的取值范圍是()A. B. C. D.7.已知函數(shù),則()A. B. C. D.8.若,則()A. B. C.2 D.9.若扇形的面積為、半徑為1,則扇形的圓心角為()A. B. C. D.10.記動點P是棱長為1的正方體的對角線上一點,記.當為鈍角時,則的取值范圍為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知無窮等比數(shù)列的首項為,公比為,則其各項的和為__________.12.若數(shù)列{an}滿足a1=2,a13.直線過點且傾斜角為,直線過點且與垂直,則與的交點坐標為____14.已知,,則的值為.15.已知在中,,則____________.16.已知,則______;的最小值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.數(shù)列中,,.(1)求證:數(shù)列為等差數(shù)列,求數(shù)列的通項公式;(2)若數(shù)列的前項和為,求證:.18.已知函數(shù),其中.解關(guān)于x的不等式;求a的取值范圍,使在區(qū)間上是單調(diào)減函數(shù).19.已知數(shù)列為等差數(shù)列,是數(shù)列的前n項和,且,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前n項和.20.△ABC的內(nèi)角A,B,C所對邊分別為,已知△ABC面積為.(1)求角C;(2)若D為AB中點,且c=2,求CD的最大值.21.已知函數(shù),(,,)的部分圖象如圖所示,其中點是圖象的一個最高點.(Ⅰ)求函數(shù)的解析式;(Ⅱ)已知且,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)函數(shù)的單調(diào)性解不等式,再解絕對值不等式,最后根據(jù)交集的定義求解.【詳解】由得,由得,所以,故選D.【點睛】本題考查指數(shù)不等式和絕對值不等式的解法,集合的交集.指數(shù)不等式要根據(jù)指數(shù)函數(shù)的單調(diào)性求解.2、B【解析】試題分析:根據(jù)頻率分布直方圖,得;該模塊測試成績不少于60分的頻率是1-(0.005+0.015)×10=0.8,∴對應(yīng)的學(xué)生人數(shù)是600×0.8=480考點:頻率分布直方圖3、A【解析】
先化簡集合,根據(jù)交集與并集的概念,即可得出結(jié)果?!驹斀狻恳驗?,,所以,.故選A【點睛】本題主要考查集合的基本運算,熟記概念即可,屬于基礎(chǔ)題型.4、B【解析】
由等比數(shù)列的性質(zhì)計算,注意項與項之間的關(guān)系即可.【詳解】由題意,,又與同號,∴.故選B.【點睛】本題考查等比數(shù)列的性質(zhì),解題時要注意等比數(shù)列中奇數(shù)項同號,偶數(shù)項同號.5、B【解析】試題分析:由正弦定理得31考點:正弦定理的應(yīng)用6、C【解析】
根據(jù)對數(shù)的性質(zhì)列不等式,根據(jù)一元二次不等式恒成立時,判別式和開口方向的要求列不等式組,解不等式組求得的取值范圍.【詳解】由得,即恒成立,由于時,在上不恒成立,故,解得.故選:C.【點睛】本小題主要考查對數(shù)函數(shù)的性質(zhì),考查一元二次不等式恒成立的條件,屬于基礎(chǔ)題.7、A【解析】
由題意結(jié)合函數(shù)的解析式分別求得的值,然后求解兩者之差即可.【詳解】由題意可得:,,則.故選:A.【點睛】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值.8、D【解析】
將轉(zhuǎn)化為,結(jié)合二倍角的正切公式即可求出.【詳解】故選D【點睛】本題主要考查了二倍角的正切公式,關(guān)鍵是將轉(zhuǎn)化為,利用二倍角的正切公式求出,屬于基礎(chǔ)題.9、B【解析】設(shè)扇形的圓心角為α,則∵扇形的面積為,半徑為1,
∴故選B10、B【解析】
建立空間直角坐標系,利用∠APC不是平角,可得∠APC為鈍角等價于cos∠APC<0,即
,從而可求λ的取值范圍.【詳解】
由題設(shè),建立如圖所示的空間直角坐標系D-xyz,
則有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)
∴
=(1,1,-1),∴
=(λ,λ,-λ),
∴
=
+
=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)
=
+
=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)
顯然∠APC不是平角,所以∠APC為鈍角等價于cos∠APC<0
∴
∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得
<λ<1
因此,λ的取值范圍是(
,1),故選B.
點評:本題考查了用空間向量求直線間的夾角,一元二次不等式的解法,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)無窮等比數(shù)列求和公式求出等比數(shù)列的各項和.【詳解】由題意可知,等比數(shù)列的各項和為,故答案為:.【點睛】本題考查等比數(shù)列各項和的求解,解題的關(guān)鍵就是利用無窮等比數(shù)列求和公式進行計算,考查計算能力,屬于基礎(chǔ)題.12、2×【解析】
判斷數(shù)列是等比數(shù)列,然后求出通項公式.【詳解】數(shù)列{an}中,a可得數(shù)列是等比數(shù)列,等比為3,an故答案為:2×3【點睛】本題考查等比數(shù)列的判斷以及通項公式的求法,考查計算能力.13、【解析】
通過題意,求出兩直線方程,聯(lián)立方程即可得到交點坐標.【詳解】根據(jù)題意可知,因此直線為:,由于直線與垂直,故,所以,所以直線為:,聯(lián)立兩直線方程,可得交點.【點睛】本題主要考查直線方程的相關(guān)計算,難度不大.14、3【解析】
,故答案為3.15、【解析】
根據(jù)可得,根據(jù)商數(shù)關(guān)系和平方關(guān)系可解得結(jié)果.【詳解】因為,所以且,又,所以,所以,因為,所以.故答案為:.【點睛】本題考查了三角函數(shù)的符號法則,考查了同角公式中的商數(shù)關(guān)系和平方關(guān)系式,屬于基礎(chǔ)題.16、50【解析】
由分段函數(shù)的表達式,代入計算即可;先求出的表達式,結(jié)合分段函數(shù)的性質(zhì),求最小值即可.【詳解】由,可得,,所以;由的表達式,可得,當時,,此時,當時,,由二次函數(shù)的性質(zhì)可知,,綜上,的最小值為0.故答案為:5;0.【點睛】本題考查求函數(shù)值,考查分段函數(shù)的性質(zhì),考查函數(shù)最值的計算,考查學(xué)生的計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)結(jié)合,構(gòu)造數(shù)列,證明得到該數(shù)列為等差數(shù)列,結(jié)合等差通項數(shù)列計算方法,即可.(2)運用裂項相消法,即可.【詳解】(1)由,(即),可得,所以,所以數(shù)列是以為首項,以2為公差的等差數(shù)列,所以,即.(2),所以,因為,所以.【點睛】本道題考查了等差數(shù)列通項計算方法和裂項相消法,難度一般.18、(1)見解析;(2).【解析】
由題意可得,對a討論,可得所求解集;求得,由反比例函數(shù)的單調(diào)性,可得,解不等式即可得到所求范圍.【詳解】的不等式,即為,即為,當時,解集為;當時,解集為;當時,解集為,;,由在區(qū)間上是單調(diào)減函數(shù),可得,解得.即a的范圍是.【點睛】本題考查分式不等式的解法,注意運用分類討論思想方法,考查函數(shù)的單調(diào)性的判斷和運用,考查運算能力,屬于基礎(chǔ)題.19、(1)(2)【解析】
(1)由等差數(shù)列可得,求得,即可求得通項公式;(2)由(1),則利用裂項相消法求數(shù)列的和即可【詳解】解:(1)因為數(shù)列是等差數(shù)列,且,,則,解得,所以(2)由(1),,所以【點睛】本題考查等差數(shù)列的通項公式,考查裂項相消法求數(shù)列的和20、(1)(2)【解析】
(1)根據(jù),由正弦定理化角為邊,得,再根據(jù)余弦定理即可求出角C;(2)由余弦定理可得,又,結(jié)合基本不等式可求得.由中點公式的向量式得,再利用數(shù)量積的運算,即可求出的最大值.【詳解】(1)依題意得,,由正弦定理得,,即,由余弦定理得,,又因為,所以.(2)∵,,∴,即.∵為中點,所以,∴當且僅當時,等號成立.所以的最大值為.【點睛】本題主要考查利用正、余弦定理解三角形,以及利用中點公式的向量式結(jié)合基本不等式解決中線的最值問題,意在考查學(xué)生的邏輯推理和數(shù)學(xué)運算能力,屬于中檔題.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 跨境進口保健品行業(yè)未來發(fā)展預(yù)測
- 2025年化學(xué)纖維加工絲合作協(xié)議書
- 吉林動畫學(xué)院《大數(shù)據(jù)程序設(shè)計(Python)實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 河北河北省第三榮軍優(yōu)撫醫(yī)院選聘高層次退休人才3人筆試歷年參考題庫附帶答案詳解
- 長江師范學(xué)院《計算思維與數(shù)據(jù)科學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海政法學(xué)院《細胞生物學(xué)和醫(yī)學(xué)遺傳學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 河南工業(yè)職業(yè)技術(shù)學(xué)院《現(xiàn)代環(huán)境生物技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 蘭州文理學(xué)院《機器學(xué)習(xí)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年引導(dǎo)信標機合作協(xié)議書
- 武昌理工學(xué)院《中醫(yī)診斷實訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年上半年東莞望牛墩鎮(zhèn)事業(yè)單位招考(10人)易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年礦山開采承包合同實施細則4篇
- 2025年度茶葉品牌加盟店加盟合同及售后服務(wù)協(xié)議
- 氧氣、乙炔工安全操作規(guī)程(3篇)
- 建筑廢棄混凝土處置和再生建材利用措施計劃
- 集裝箱知識培訓(xùn)課件
- 某縣城區(qū)地下綜合管廊建設(shè)工程項目可行性實施報告
- 《架空輸電線路導(dǎo)線舞動風(fēng)偏故障告警系統(tǒng)技術(shù)導(dǎo)則》
- 2024年計算機二級WPS考試題庫
- JJF(京) 92-2022 激光標線儀校準規(guī)范
- 廣東省廣州黃埔區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試卷(含答案)
評論
0/150
提交評論