




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年湖南省十四校聯(lián)考高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)實數(shù)滿足約束條件,則的最大值為()A. B.4 C.5 D.2.在中,已知、、分別是角、、的對邊,若,則的形狀為A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形3.對數(shù)列,“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.非充分非必要條件4.已知,若關(guān)于的不等式的解集中的整數(shù)恰有3個,則實數(shù)的取值范圍是()A. B. C. D.5.等比數(shù)列的前項和為,若,則公比()A. B. C. D.6.已知直三棱柱的所有棱長都相等,為的中點,則與所成角的余弦值為()A. B. C. D.7.若||=2cos15°,||=4sin15°,的夾角為30°,則等于()A. B. C.2 D.8.在平面直角坐標系中,角的頂點與原點重合,它的始邊與軸的非負半軸重合,終邊交單位圓于點,則的值為()A. B. C. D.9.在中,,BC邊上的高等于,則A. B. C. D.10.已知函數(shù),若使得在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期是____.12.67是等差數(shù)列-5,1,7,13,……中第項,則___________________.13.方程在區(qū)間上的解為___________.14.的化簡結(jié)果是_________.15._____16.若角是第四象限角,則角的終邊在_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),其中.(1)當時,求的最小值;(2)設(shè)函數(shù)恰有兩個零點,且,求的取值范圍.18.在平面直角坐標系中,已知向量,.(1)求證:且;(2)設(shè)向量,,且,求實數(shù)的值.19.如圖,已知平面,為矩形,分別為的中點,.(1)求證:平面;(2)求證:面平面;(3)求點到平面的距離.20.已知非零數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)若關(guān)于的不等式有解,求整數(shù)的最小值;(3)在數(shù)列中,是否存在首項、第項、第項(),使得這三項依次構(gòu)成等差數(shù)列?若存在,求出所有的;若不存在,請說明理由.21.在中,分別為角所對應(yīng)的邊,已知,,求的長度.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
作出可行域,作出目標函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,向上平移直線,增大,當直線過點時,得最大值為,故選:A.【點睛】本題考查簡單的線性規(guī)劃,解題關(guān)鍵是作出可行域和目標函數(shù)對應(yīng)的直線.2、D【解析】
由,利用正弦定理可得,進而可得sin2A=sin2B,由此可得結(jié)論.【詳解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形狀是等腰三角形或直角三角形故選D.【點睛】判斷三角形形狀的常見方法是:(1)通過正弦定理和余弦定理,化邊為角,利用三角變換得出三角形內(nèi)角之間的關(guān)系進行判斷;(2)利用正弦定理、余弦定理,化角為邊,通過代數(shù)恒等變換,求出邊與邊之間的關(guān)系進行判斷;(3)根據(jù)余弦定理確定一個內(nèi)角為鈍角進而知其為鈍角三角形.3、A【解析】
根據(jù)遞增數(shù)列的性質(zhì)和充分必要條件判斷即可【詳解】對于任意成立可以推出其前n項和數(shù)列為遞增數(shù)列,但反過來不成立如當時其,此時為遞增數(shù)列但所以“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的充分非必要條件故選:A【點睛】要說明一個命題不成立,只需舉出一個反例即可.4、A【解析】
將不等式化為,可知滿足不等式,不滿足不等式,由此可確定個整數(shù)解為;當和時,解不等式可知不滿足題意;當時,解出不等式的解集,要保證整數(shù)解為,則需,解不等式組求得結(jié)果.【詳解】由得:當時,成立必為不等式的一個整數(shù)解當時,不成立不是不等式的整數(shù)解個整數(shù)解分別為:當時,,不滿足題意當時,解不等式得:或不等式不可能只有個整數(shù)解,不滿足題意當時,,解得:,即的取值范圍為:本題正確選項:【點睛】本題考查根據(jù)不等式整數(shù)解的個數(shù)求解參數(shù)范圍問題,關(guān)鍵是能夠利用特殊值確定整數(shù)解的具體取值,從而解不等式,根據(jù)整數(shù)解的取值來確定解集的上下限,構(gòu)造不等式組求得結(jié)果.5、A【解析】
將轉(zhuǎn)化為關(guān)于的方程,解方程可得的值.【詳解】∵,∴,又,∴.故選A.【點睛】本題考查等比數(shù)列的基本運算,等比數(shù)列中共有五個量,其中是基本量,這五個量可“知三求二”,求解的實質(zhì)是解方程或解方程組.6、D【解析】
取的中點,連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點,連接,則,所以異面直線與所成角就是直線與所成角,設(shè)正三棱柱的各棱長為,則,設(shè)直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、B【解析】分析:先根據(jù)向量數(shù)量積定義化簡,再根據(jù)二倍角公式求值.詳解:因為,所以選B.點睛:平面向量數(shù)量積的類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式;二是坐標公式;三是利用數(shù)量積的幾何意義.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進行化簡.8、C【解析】
根據(jù)三角函數(shù)的定義,即可求解,得到答案.【詳解】由題意,角的頂點與原點重合,它的始邊與軸的非負半軸重合,終邊交單位圓于點,根據(jù)三角函數(shù)的定義可得.故選:C.【點睛】本題主要考查了三角的函數(shù)的定義,其中解答中熟記三角函數(shù)的定義是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.9、D【解析】試題分析:設(shè)邊上的高線為,則,所以.由正弦定理,知,即,解得,故選D.【考點】正弦定理【方法點撥】在平面幾何圖形中求相關(guān)的幾何量時,需尋找各個三角形之間的聯(lián)系,交叉使用公共條件,常常將所涉及到已知幾何量與所求幾何集中到某一個三角形,然后選用正弦定理與余弦定理求解.10、A【解析】
根據(jù)在區(qū)間上為增函數(shù)的整數(shù)有且僅有一個,結(jié)合正弦函數(shù)的單調(diào)性,即可求得答案.【詳解】,使得在區(qū)間上為增函數(shù)可得當時,滿足整數(shù)至少有,舍去當時,,要使整數(shù)有且僅有一個,須,解得:實數(shù)的取值范圍是.故選:A.【點睛】本題主要考查了根據(jù)三角函數(shù)在某區(qū)間上單調(diào)求參數(shù)值,解題關(guān)鍵是掌握正弦型三角函數(shù)單調(diào)區(qū)間的解法和結(jié)合三角函數(shù)圖象求參數(shù)范圍,考查了分析能力和計算能力,屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將三角函數(shù)化簡為標準形式,再利用周期公式得到答案.【詳解】由于所以【點睛】本題考查了三角函數(shù)的化簡,周期公式,屬于簡單題.12、13【解析】
根據(jù)數(shù)列寫出等差數(shù)列通項公式,再令算出即可.【詳解】由題意,首項為-5,公差為,則等差數(shù)列通項公式,令,則故答案為:13.【點睛】等差數(shù)列首項為公差為,則通項公式13、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數(shù)求值【名師點睛】已知三角函數(shù)值求角,基本思路是通過化簡,得到角的某種三角函數(shù)值,結(jié)合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.14、【解析】原式,因為,所以,且,所以原式.15、【解析】
將寫成,切化弦后,利用兩角和差余弦公式可將原式化為,利用二倍角公式可變?yōu)?,由可化簡求得結(jié)果.【詳解】本題正確結(jié)果:【點睛】本題考查利用三角恒等變換公式進行化簡求值的問題,涉及到兩角和差余弦公式、二倍角公式的應(yīng)用.16、第二或第四象限【解析】
根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【詳解】因為角是第四象限角,所以,即有,當為偶數(shù)時,角的終邊在第四象限;當為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【點睛】本題主要考查象限角的集合的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)當時,利用指數(shù)函數(shù)和二次函數(shù)的圖象與性質(zhì),得到函數(shù)的單調(diào)性,即可求得函數(shù)的最小值;(2)分段討論討論函數(shù)在相應(yīng)的區(qū)間內(nèi)的根的個數(shù),函數(shù)在時,至多有一個零點,函數(shù)在時,可能僅有一個零點,可能有兩個零點,分別求出的取值范圍,可得解.【詳解】(1)當時,函數(shù),當時,,由指數(shù)函數(shù)的性質(zhì),可得函數(shù)在上為增函數(shù),且;當時,,由二次函數(shù)的性質(zhì),可得函數(shù)在上為減函數(shù),在上為增函數(shù),又由函數(shù),當時,函數(shù)取得最小值為;故當時,最小值為.(2)因為函數(shù)恰有兩個零點,所以(?。┊敃r,函數(shù)有一個零點,令得,因為時,,所以時,函數(shù)有一個零點,設(shè)零點為且,此時需函數(shù)在時也恰有一個零點,令,即,得,令,設(shè),,因為,所以,,,當時,,所以,即,所以在上單調(diào)遞增;當時,,所以,即,所以在上單調(diào)遞減;而當時,,又時,,所以要使在時恰有一個零點,則需,要使函數(shù)恰有兩個零點,且,設(shè)在時的零點為,則需,而當時,,所以當時,函數(shù)恰有兩個零點,并且滿足;(ⅱ)若當時,函數(shù)沒有零點,函數(shù)在恰有兩個零點,且滿足,也符合題意,而由(ⅰ)可得,要使當時,函數(shù)沒有零點,則,要使函數(shù)在恰有兩個零點,則,但不能滿足,所以沒有的范圍滿足當時,函數(shù)沒有零點,函數(shù)在恰有兩個零點,且滿足,綜上可得:實數(shù)的取值范圍為.故得解.【點睛】本題主要考查了指數(shù)函數(shù)與二次函數(shù)的圖象與性質(zhì)的應(yīng)用,以及函數(shù)與方程,函數(shù)的零點問題的綜合應(yīng)用,屬于難度題,關(guān)鍵在于分析分段函數(shù)在相應(yīng)的區(qū)間內(nèi)的單調(diào)性,以及其圖像趨勢,可運用數(shù)形結(jié)合方便求解,注意在討論二次函數(shù)的根的情況時的定義域?qū)ζ涞挠绊懀?8、(1)證明見解析(2)【解析】
(1)根據(jù)向量的坐標求出向量模的方法以及向量的數(shù)量積即可求解.(2)根據(jù)向量垂直,可得數(shù)量積等于,進而解方程即可求解.【詳解】(1)證明:,,所以,因為,所以;(2)因為,所以,由(1)得:所以,解得.【點睛】本題考查了向量坐標求向量的模以及向量數(shù)量積的坐標表示,屬于基礎(chǔ)題.19、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)利用線面平行的判定定理,尋找面PAD內(nèi)的一條直線平行于MN,即可證出;(2)先證出一條直線垂直于面PCD,依據(jù)第一問結(jié)論知,MN也垂直于面PCD,利用面面垂直的判定定理即可證出;(3)依據(jù)等積法,即可求出點到平面的距離.【詳解】證明:(1)取中點為,連接分別為的中點,是平行四邊形,平面,平面,∴平面證明:(2)因為平面,所以,而,面PAD,而面,所以,由,為的終點,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,則點到平面的距離為(也可構(gòu)造三棱錐)【點睛】本題主要考查線面平行、面面垂直的判定定理以及等積法求點到面的距離,意在考查學(xué)生的直觀想象、邏輯推理、數(shù)學(xué)運算能力.20、(1)證明見解析;(2);(3)存在,或.【解析】
(1)由條件可得,即,再由等比數(shù)列的定義即可得證;
(2)由等比數(shù)列的通項公式求得,,再由數(shù)列的單調(diào)性的判斷,可得最小值,解不等式即可得到所求最小值;
(3)假設(shè)存在首項、第項、第項(),使得這三項依次構(gòu)成等差數(shù)列,由等差數(shù)列的中項的性質(zhì)和恒等式的性質(zhì),可得,的方程,解方程可得所求值.【詳解】解:(1)證明:由,
得,即,
所以數(shù)列是首項為2,公比為2的等比數(shù)列;
(2)由(1)可得,,則
故,
設(shè),
則,
所以單調(diào)遞增,
則,于是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鑿井勘查合同范例
- 勞務(wù)損傷賠償合同范本
- 化工生產(chǎn)合同范本
- 2024年中國動漫博物館(杭州)招聘考試真題
- 2024年重慶永川區(qū)五間鎮(zhèn)招聘公益性崗位人員筆試真題
- 鄉(xiāng)下房屋轉(zhuǎn)賣合同范本
- gf分包合同范本
- 修路合同范本簡版
- 出售小區(qū)公共用地合同范本
- 北京三室一廳租房合同范本
- 2022年全國新高考Ⅰ卷:馮至《江上》
- 體能訓(xùn)練概論(NSCA)
- 青島版三年級數(shù)學(xué)下冊《美麗的街景》教學(xué)課件7
- 銅陵油庫重油罐區(qū)工藝設(shè)計
- 液壓傳動全套ppt課件(完整版)
- 質(zhì)量手冊CCC認證完整
- DB51∕T 2767-2021 安全生產(chǎn)風(fēng)險分級管控體系通則
- 反興奮劑考試試題與解析
- 低壓電氣安全知識培訓(xùn)課件(35張PPT)
- 電子支氣管鏡檢查、清洗消毒保養(yǎng)及注意事項解讀
- 建筑工程材料取樣及收費標準
評論
0/150
提交評論