版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年江蘇省泰興市西城中學(xué)高一下數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知數(shù)列滿足,,則數(shù)列的前10項(xiàng)和為()A. B. C. D.2.過點(diǎn)的直線的斜率為,則等于()A. B.10 C.2 D.43.已知兩個(gè)變量x,y之間具有線性相關(guān)關(guān)系,試驗(yàn)測得(x,y)的四組值分別為(1,2),(2,4),(3,5),(4,7),則y與x之間的回歸直線方程為()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.24.已知表示三條不同的直線,表示兩個(gè)不同的平面,下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則5.已知直線a2x+y+2=0與直線bx-(a2+1)y-1=0互相垂直,則|ab|的最小值為A.5 B.4 C.2 D.16.已知滿足條件,則目標(biāo)函數(shù)的最小值為A.0 B.1 C. D.7.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形8.甲箱子里裝有個(gè)白球和個(gè)紅球,乙箱子里裝有個(gè)白球和個(gè)紅球.從這兩個(gè)箱子里分別摸出一個(gè)球,設(shè)摸出的白球的個(gè)數(shù)為,摸出的紅球的個(gè)數(shù)為,則()A.,且 B.,且C.,且 D.,且9.已知正四面體ABCD中,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為()A. B. C. D.10.已知直三棱柱的所有頂點(diǎn)都在球0的表面上,,,則=()A.1 B.2 C. D.4二、填空題:本大題共6小題,每小題5分,共30分。11.若不等式的解集為空集,則實(shí)數(shù)的能為___________.12.若等比數(shù)列滿足,且公比,則_____.13.等比數(shù)列中前n項(xiàng)和為,且,,,則項(xiàng)數(shù)n為____________.14.已知向量滿足,則與的夾角的余弦值為__________.15.適合條件的角的取值范圍是______.16.已知是等比數(shù)列,,,則公比______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.若,解關(guān)于的不等式.18.已知直線l:x+3y﹣2=1.(1)求與l垂直,且過點(diǎn)(1,1)直線方程;(2)求圓心為(4,1),且與直線l相切的圓的方程.19.在中,內(nèi)角、、所對的邊分別為,,,且滿足.(1)求角的大小;(2)若,是方程的兩根,求的值.20.如圖,在四棱錐中,底面是正方形,側(cè)面⊥底面,若分別為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求證:平面⊥平面.21.若是的一個(gè)內(nèi)角,且,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
由判斷出數(shù)列是等比數(shù)列,再求出,利用等比數(shù)列前項(xiàng)和公式求解即可.【詳解】由,得,所以數(shù)列是以為公比的等比數(shù)列,又,所以,由等比數(shù)列前項(xiàng)和公式,.故選:C【點(diǎn)睛】本題主要考查等比數(shù)列的定義和等比數(shù)列前項(xiàng)和公式的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】
直接應(yīng)用斜率公式,解方程即可求出的值.【詳解】因?yàn)檫^點(diǎn)的直線的斜率為,所以有,故本題選B.【點(diǎn)睛】本題考查了直線斜率公式,考查了數(shù)學(xué)運(yùn)算能力.3、C【解析】試題分析:設(shè)樣本中線點(diǎn)為,其中,即樣本中心點(diǎn)為,因?yàn)榛貧w直線必過樣本中心點(diǎn),將代入四個(gè)選項(xiàng)只有B,C成立,畫出散點(diǎn)圖分析可知兩個(gè)變量x,y之間正相關(guān),故C正確.考點(diǎn):回歸直線方程4、D【解析】
利用線面平行、線面垂直的判定定理與性質(zhì)依次對選項(xiàng)進(jìn)行判斷,即可得到答案.【詳解】對于A,當(dāng)時(shí),則與不平行,故A不正確;對于B,直線與平面平行,則直線與平面內(nèi)的直線有兩種關(guān)系:平行或異面,故B不正確;對于C,若,則與不垂直,故C不正確;對于D,若兩條直線垂直于同一個(gè)平面,則這兩條直線平行,故D正確;故答案選D【點(diǎn)睛】本題考查空間中直線與直線、直線與平面位置關(guān)系相關(guān)定理的應(yīng)用,屬于中檔題.5、C【解析】試題分析:由已知有,∴,∴.考點(diǎn):1.兩直線垂直的充要條件;2.均值定理的應(yīng)用.6、C【解析】作出不等式區(qū)域如圖所示:求目標(biāo)函數(shù)的最小值等價(jià)于求直線的最小縱截距.平移直線經(jīng)過點(diǎn)A(-2,0)時(shí)最小為-2.故選C.7、C【解析】
由基本不等式得出,將三個(gè)不等式相加得出,由等號成立的條件可判斷出的形狀.【詳解】為三邊,,由基本不等式可得,將上述三個(gè)不等式相加得,當(dāng)且僅當(dāng)時(shí)取等號,所以,是等邊三角形,故選C.【點(diǎn)睛】本題考查三角形形狀的判斷,考查基本不等式的應(yīng)用,利用基本不等式要注意“一正、二定、三相等”條件的應(yīng)用,考查推理能力,屬于中等題.8、D【解析】可取,;,,,,,故選D.9、B【解析】試題分析:如圖,取中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),則,或其補(bǔ)角就是異面直線所成的角,設(shè)正四面體棱長為1,則,,.故選B.考點(diǎn):異面直線所成的角.【名師點(diǎn)睛】求異面直線所成的角的關(guān)鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點(diǎn)的選取,選取特殊點(diǎn)時(shí)要盡可能地使它與題設(shè)的所有相減條件和解題目標(biāo)緊密地聯(lián)系起來.如已知直線上的某一點(diǎn),特別是線段的中點(diǎn),幾何體的特殊線段.10、B【解析】
由題得在底面的投影為的外心,故為的中點(diǎn),再利用數(shù)量積計(jì)算得解.【詳解】依題意,在底面的投影為的外心,因?yàn)椋蕿榈闹悬c(diǎn),,故選B.【點(diǎn)睛】本題主要考查平面向量的運(yùn)算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)分式不等式,移項(xiàng)、通分并等價(jià)化簡,可得一元二次不等式.結(jié)合二次函數(shù)恒成立條件,即可求得的值.【詳解】將不等式化簡可得即的解集為空集所以對于任意都恒成立將不等式等價(jià)化為即恒成立由二次函數(shù)性質(zhì)可知化簡不等式可得解得故答案為:【點(diǎn)睛】本題考查了分式不等式的解法,將不等式等價(jià)化為一元二次不等式,結(jié)合二次函數(shù)性質(zhì)解決恒成立問題,屬于中檔題.12、.【解析】
利用等比數(shù)列的通項(xiàng)公式及其性質(zhì)即可得出.【詳解】,故答案為:1.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于容易題.13、6【解析】
利用等比數(shù)列求和公式求得,再利用通項(xiàng)公式求解n即可【詳解】,代入,,得,又,得.故答案為:6【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及求和公式的基本量計(jì)算,熟記公式準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題14、【解析】
由得,結(jié)合條件,即可求出,的值,代入求夾角公式,即可求解.【詳解】由得與的夾角的余弦值為.【點(diǎn)睛】本題考查數(shù)量積的定義,公式的應(yīng)用,求夾角公式的應(yīng)用,計(jì)算量較大,屬基礎(chǔ)題.15、【解析】
根據(jù)三角函數(shù)的符號法則,得,從而求出的取值范圍.【詳解】,的取值范圍的解集為.故答案為:【點(diǎn)睛】本題主要考查了三角函數(shù)符號法則的應(yīng)用問題,是基礎(chǔ)題.16、【解析】
利用等比數(shù)列的性質(zhì)可求.【詳解】設(shè)等比數(shù)列的公比為,則,故.故答案為:【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)(為公比);(3)公比時(shí),則有,其中為常數(shù)且;(4)為等比數(shù)列()且公比為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、當(dāng)0<a<1時(shí),原不等式的解集為,當(dāng)a<0時(shí),原不等式的解集為;當(dāng)a=0時(shí),原不等式的解集為?.【解析】
試題分析:(1),利用,可得,分三種情況對討論的范圍:0<a<1,a<0,a=0,分別求得相應(yīng)情況下的解集即可.試題解析:不等式>1可化為>0.因?yàn)閍<1,所以a-1<0,故原不等式可化為<0.故當(dāng)0<a<1時(shí),原不等式的解集為,當(dāng)a<0時(shí),原不等式的解集為,當(dāng)a=0時(shí),原不等式的解集為?.18、(1)3x﹣y﹣2=1;(2)(x﹣4)2+(y﹣1)2.【解析】
(1)根據(jù)兩直線垂直的性質(zhì),設(shè)出所求直線的方程,將點(diǎn)坐標(biāo)代入,由此求得所求直線方程.(2)利用圓心到直線的距離求得圓的半徑,由此求得圓的方程.【詳解】(1)根據(jù)題意,設(shè)要求直線的方程為3x﹣y﹣m=1,又由要求直線經(jīng)過點(diǎn)(1,1),則有3﹣1﹣m=1,解可得m=2;即要求直線的方程為3x﹣y﹣2=1;(2)根據(jù)題意,設(shè)要求圓的半徑為r,若直線l與圓相切,則有r=d,則要求圓的方程為(x﹣4)2+(y﹣1)2.【點(diǎn)睛】本小題主要考查兩條直線垂直的知識,考查直線和圓的位置關(guān)系,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)由,可得:,再用正弦定理可得:,從而求得的值;(2)根據(jù)題意由韋達(dá)定理和余弦定理列出關(guān)于的方程求解即可.【詳解】(1)由,得:,可得:,得.由正弦定理有:,由,有,故,可得,由,有.(2)由,是方程的兩根,得,利用余弦定理得而,可得.【點(diǎn)睛】本題考查了三角形的正余弦定理的應(yīng)用,化簡與求值,屬于基礎(chǔ)題.20、(1)證明見解析;(2)證明見解析.【解析】
(Ⅰ)利用線面平行的判定定理,只需證明EF∥PA,即可;(Ⅱ)先證明線面垂直,CD⊥平面PAD,再證明面面垂直,平面PAD⊥平面PDC
即可.【詳解】(Ⅰ)證明:連結(jié)AC,在正方形ABCD中,F(xiàn)為BD中點(diǎn),正方形對角線互相平分,∴F為AC中點(diǎn),又E是PC中點(diǎn),在△CPA中,EF∥PA,且PA?平面PAD,EF?平面PAD,∴EF∥平面PAD.(Ⅱ)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,平面∴CD⊥平面PAD,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度秸稈生物質(zhì)炭-玉米秸稈收購與生產(chǎn)合同
- 2025年度汽車以租代購綠色出行解決方案合同
- 二零二五年度住宅樓盤物業(yè)管理權(quán)變更合同
- 2025年度貨車?yán)涁涍\(yùn)保險(xiǎn)代理合同
- 心理危機(jī)干預(yù)治療
- 曠工除名的回復(fù)函
- 簡歷工作業(yè)績文案模板
- 化驗(yàn)室基礎(chǔ)知識培訓(xùn)
- 處理涉案財(cái)物的通知函
- 貨物破損回復(fù)函
- 校園熱水方案
- 跟蹤服務(wù)項(xiàng)目活動(dòng)實(shí)施方案
- 新能源汽車產(chǎn)業(yè)鏈中的區(qū)域發(fā)展不均衡分析與對策
- 財(cái)務(wù)機(jī)器人技術(shù)在會(huì)計(jì)工作中的應(yīng)用
- 《保單檢視專題》課件
- 建筑保溫隔熱構(gòu)造
- 智慧財(cái)務(wù)綜合實(shí)訓(xùn)
- 安徽省合肥市2021-2022學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)3
- 教育專家報(bào)告合集:年度得到:沈祖蕓全球教育報(bào)告(2023-2024)
- 肝臟腫瘤護(hù)理查房
- 護(hù)士工作壓力管理護(hù)理工作中的壓力應(yīng)對策略
評論
0/150
提交評論