版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省鎮(zhèn)江市丹徒高級(jí)中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末經(jīng)典模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,則()A. B. C.2 D.2.已知直線與互相垂直,垂足坐標(biāo)為,且,則的最小值為()A.1 B.4 C.8 D.93.三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,則二面角V-AB-CA.30° B.45° C.60° D.90°4.已知變量x,y滿足約束條件x+y-2≥0,y≤2,x-y≤0,則A.2 B.3 C.4 D.65.若雙曲線的漸近線與直線所圍成的三角形面積為2,則該雙曲線的離心率為()A. B. C. D.6.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積等于()A. B.或 C.或 D.7.用分層抽樣的方法從10盆紅花和5盆藍(lán)花中選出3盆,則所選紅花和藍(lán)花的盆數(shù)分別為A.2,1 B.1,2 C.0,3 D.3,08.若集合A={x|2≤x<4},?B={x|x>3}A.{x|3≤x<4} B.{x|3<x<4} C.{x|2≤x<3} D.{x|2≤x≤3}9.如圖,在等腰梯形中,,于點(diǎn),則()A. B.C. D.10.設(shè),表示兩條直線,,表示兩個(gè)平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.向量滿足:,與的夾角為,則=_____________;12.已知,,與的夾角為鈍角,則的取值范圍是_____;13.函數(shù)的最大值為_(kāi)_____.14.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為_(kāi)_________.15.設(shè)函數(shù)的部分圖象如圖所示,則的表達(dá)式______.16.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項(xiàng)和為{Sn}.若,,則q=______________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知關(guān)于的一元二次函數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的一次項(xiàng)系數(shù).(1)若,,求函數(shù)有零點(diǎn)的概率;(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.18.(1)若關(guān)于x的不等式2x>m(x2+6)的解集為{x|x<﹣3或x>﹣2},求不等式5mx2+x+3>0的解集.(2)若2kx<x2+4對(duì)于一切的x>0恒成立,求k的取值范圍.19.已知函數(shù),求其定義域.20.已知數(shù)列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求數(shù)列{an}的通項(xiàng)公式:(2)若對(duì)任意的n∈N*,不等式1≤man≤5恒成立,求實(shí)數(shù)m的取值范圍.21.已知數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列,且,記數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為.(1)若,求序數(shù)的值;(2)若數(shù)列的公差,求數(shù)列的公比及.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
將轉(zhuǎn)化為,結(jié)合二倍角的正切公式即可求出.【詳解】故選D【點(diǎn)睛】本題主要考查了二倍角的正切公式,關(guān)鍵是將轉(zhuǎn)化為,利用二倍角的正切公式求出,屬于基礎(chǔ)題.2、B【解析】
代入垂足坐標(biāo),可得,然后根據(jù)基本不等式,可得結(jié)果.【詳解】由兩條直線的交點(diǎn)坐標(biāo)為所以代入可得,即又,所以即當(dāng)且僅當(dāng),即時(shí),取等號(hào)故選:B【點(diǎn)睛】本題主要考查基本不等式,屬基礎(chǔ)題.3、C【解析】
取AB中點(diǎn)O,連結(jié)VO,CO,由等腰三角形的性質(zhì)可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度數(shù).【詳解】取AB中點(diǎn)O,連結(jié)VO,CO,∴三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度數(shù)為60°【點(diǎn)睛】本題主要考查三棱錐的性質(zhì)、二面角的求法,屬于中檔題.求二面角的大小既能考查線線垂直關(guān)系,又能考查線面垂直關(guān)系,同時(shí)可以考查學(xué)生的計(jì)算能力,是高考命題的熱點(diǎn),求二面角的方法通常有兩個(gè)思路:一是利用空間向量,建立坐標(biāo)系,這種方法優(yōu)點(diǎn)是思路清晰、方法明確,但是計(jì)算量較大;二是傳統(tǒng)方法,求出二面角平面角的大小,這種解法的關(guān)鍵是找到平面角.4、D【解析】
試題分析:把函數(shù)轉(zhuǎn)化為表示斜率為截距為平行直線系,當(dāng)截距最大時(shí),最大,由題意知當(dāng)直線過(guò)和兩條直線交點(diǎn)時(shí)考點(diǎn):線性規(guī)劃的應(yīng)用.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、A【解析】漸近線為,時(shí),,所以,即,,,故選A.6、D【解析】
作出幾何體的直觀圖,可知幾何體為正方體切一角所得的組合體,計(jì)算出正方體的體積和所切去三棱錐的體積,相減可得答案.【詳解】幾何體的直觀圖如下圖所示:可知幾何體為正方體切一角所得的組合體,因此,該幾何體的體積為.故選:D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)三視圖作出幾何體的直觀圖是解答的關(guān)鍵,考查空間想象能力與計(jì)算能力,屬于中等題.7、A【解析】
利用分層抽樣的性質(zhì)直接求解.【詳解】解:用分層抽樣的方法從10盆紅花和5盆藍(lán)花中選出3盆,則所選紅花的盆數(shù)為:,所選藍(lán)花的盆數(shù)為:.故選:A.【點(diǎn)睛】本題考查所選紅花和藍(lán)花的盆數(shù)的求法,考查分層抽樣的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.8、B【解析】
根據(jù)交集定義計(jì)算.【詳解】由題意A∩B={x|3<x<4}.故選B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,屬于基礎(chǔ)題.9、A【解析】
根據(jù)等腰三角形的性質(zhì)可得是的中點(diǎn),由平面向量的加法運(yùn)算法則結(jié)合向量平行的性質(zhì)可得結(jié)果.【詳解】因?yàn)椋允堑闹悬c(diǎn),可得,故選.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及向量平行的性質(zhì),屬于簡(jiǎn)單題.向量的運(yùn)算有兩種方法,一是幾何運(yùn)算往往結(jié)合平面幾何知識(shí)和三角函數(shù)知識(shí)解答,運(yùn)算法則是:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和);二是坐標(biāo)運(yùn)算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問(wèn)題解答(求最值與范圍問(wèn)題,往往利用坐標(biāo)運(yùn)算比較簡(jiǎn)單)10、D【解析】
對(duì)選項(xiàng)進(jìn)行一一判斷,選項(xiàng)D為面面垂直判定定理.【詳解】對(duì)A,與可能異面,故A錯(cuò);對(duì)B,可能在平面內(nèi);對(duì)C,與平面可能平行,故C錯(cuò);對(duì)D,面面垂直判定定理,故選D.【點(diǎn)睛】本題考查空間中線、面位置關(guān)系,判斷一個(gè)命題為假命題,只要能舉出反例即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)模的計(jì)算公式可直接求解.【詳解】故填:.【點(diǎn)睛】本題考查了平面向量模的求法,屬于基礎(chǔ)題型.12、【解析】
與的夾角為鈍角,即數(shù)量積小于0.【詳解】因?yàn)榕c的夾角為鈍角,所以與的數(shù)量積小于0且不平行.且所以【點(diǎn)睛】本題考查兩向量的夾角為鈍角的坐標(biāo)表示,一定注意數(shù)量積小于0包括平角.13、【解析】
設(shè),,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【詳解】解:函數(shù),設(shè),,則,,,,故當(dāng),即時(shí),函數(shù),故故答案為:;【點(diǎn)睛】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.14、1【解析】
由已知中的程序語(yǔ)句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算S的值并輸出變量i的值,模擬程序的運(yùn)行過(guò)程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運(yùn)行,可得
S=1,i=1
滿足條件S<40,執(zhí)行循環(huán)體,S=3,i=2
滿足條件S<40,執(zhí)行循環(huán)體,S=7,i=3
滿足條件S<40,執(zhí)行循環(huán)體,S=15,i=4
滿足條件S<40,執(zhí)行循環(huán)體,S=31,i=5
滿足條件S<40,執(zhí)行循環(huán)體,S=13,i=1
此時(shí),不滿足條件S<40,退出循環(huán),輸出i的值為1.
故答案為:1.【點(diǎn)睛】本題主要考查的是程序框圖,屬于基礎(chǔ)題.在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.15、【解析】
根據(jù)圖象的最高點(diǎn)得到,由圖象得到,故得,然后通過(guò)代入最高點(diǎn)的坐標(biāo)或運(yùn)用“五點(diǎn)法”得到,進(jìn)而可得函數(shù)的解析式.【詳解】由圖象可得,∴,∴,∴.又點(diǎn)在函數(shù)的圖象上,∴,∴,∴.又,∴.∴.故答案為.【點(diǎn)睛】已知圖象確定函數(shù)解析式的方法(1)由圖象直接得到,即最高點(diǎn)的縱坐標(biāo).(2)由圖象得到函數(shù)的周期,進(jìn)而得到的值.(3)的確定方法有兩種.①運(yùn)用代點(diǎn)法求解,通過(guò)把圖象的最高點(diǎn)或最低點(diǎn)的坐標(biāo)代入函數(shù)的解析式求出的值;②運(yùn)用“五點(diǎn)法”求解,即由函數(shù)最開(kāi)始與軸的交點(diǎn)(最靠近原點(diǎn))的橫坐標(biāo)為(即令,)確定.16、【解析】將,兩個(gè)式子全部轉(zhuǎn)化成用,q表示的式子.即,兩式作差得:,即:,解之得:(舍去)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)依次列出所有可能的情況,求出滿足的情況總數(shù),即可得到概率;(2)列出不等關(guān)系,表示出平面區(qū)域,求出滿足表示的區(qū)域的面積,即可得到概率.【詳解】(1)由題可得,,從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的一次項(xiàng)系數(shù),記為,這樣的有序數(shù)對(duì)共有,9種情況;函數(shù)有零點(diǎn),即滿足,滿足條件的有:,6種情況,所以其概率為;(2),滿足條件的有序數(shù)對(duì),,即平面直角坐標(biāo)系內(nèi)區(qū)域:矩形及內(nèi)部區(qū)域,面積為4,函數(shù)在區(qū)間上是增函數(shù),即滿足,,,即,平面直角坐標(biāo)系內(nèi)區(qū)域:直角梯形及內(nèi)部區(qū)域,面積為3,所以其概率為.【點(diǎn)睛】此題考查古典概型與幾何概型,關(guān)鍵在于準(zhǔn)確得出二次函數(shù)有零點(diǎn)和在區(qū)間上是增函數(shù),分別所對(duì)應(yīng)的基本事件個(gè)數(shù)以及對(duì)應(yīng)區(qū)域的面積.18、(1);(2)【解析】
(1)原不等式等價(jià)于根據(jù)不等式的解集由根與系數(shù)的關(guān)系可得關(guān)于的方程,解出的值,進(jìn)而求得的解集;(2)由對(duì)于一切的恒成立,可得,求出的最小值即可得到的取值范圍.【詳解】(1)原不等式等價(jià)于,所以的解集為則,,所以等價(jià)于,即,所以,所以不等式的解集為(2)因?yàn)?,由,得,?dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本題主要考查了一元二次不等式的解法,不等式恒成立問(wèn)題和基本不等式,考查了方程思想和轉(zhuǎn)化思想,屬基礎(chǔ)題.19、【解析】
由使得分式和偶次根式有意義的要求可得到一元二次不等式,解不等式求得結(jié)果.【詳解】由題意得:,即,解得:定義域?yàn)椤军c(diǎn)睛】本題考查具體函數(shù)定義域的求解問(wèn)題,關(guān)鍵是明確使得分式和偶次根式有意義的基本要求,由此構(gòu)造不等式求得結(jié)果.20、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】
(1)由已知,根據(jù)遞推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基礎(chǔ)之上解不等式可得實(shí)數(shù)的取值范圍.【詳解】(1)由已知,根據(jù)遞推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,當(dāng)n≥2時(shí),an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2時(shí),an=11+2×(1﹣()n﹣1),又a1=1也滿足上式,故an=3﹣2×()n﹣1.(2)由1≤man≤5,得1≤man=m(3﹣2()n﹣1)≤5.因?yàn)?﹣2()n﹣1>0,所以,當(dāng)n為奇數(shù)時(shí),3﹣2()n﹣1∈[1,3);當(dāng)n為偶數(shù)時(shí),3﹣2()n﹣1∈(3,4],所以3﹣2()n﹣1最大值為4,最小值為1.對(duì)于任意的正整數(shù)n都有成立,所以1≤m.即所求實(shí)數(shù)m的取值范圍是{m|1≤m}.【點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南建筑安全員-A證考試題庫(kù)附答案
- 貴州大學(xué)《醫(yī)學(xué)統(tǒng)計(jì)學(xué)規(guī)培》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財(cái)經(jīng)職業(yè)學(xué)院《火災(zāi)動(dòng)力學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025福建建筑安全員考試題庫(kù)
- 貴陽(yáng)學(xué)院《保險(xiǎn)投資學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《植物造景技術(shù)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州幼兒師范高等專科學(xué)?!稛o(wú)人機(jī)結(jié)構(gòu)與系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年貴州省安全員B證考試題庫(kù)及答案
- 2025江蘇建筑安全員《B證》考試題庫(kù)及答案
- 2025年河南省安全員《C證》考試題庫(kù)及答案
- 2024-2025學(xué)年北京房山區(qū)初三(上)期末英語(yǔ)試卷
- 公路工程質(zhì)量與安全管理課件
- 四年級(jí)道德與法治試卷分析范文(通用5篇)
- 封條模板A4直接打印版
- 常見(jiàn)化療藥物的不良反應(yīng)及預(yù)防 課件
- 電解銅箔制造工藝簡(jiǎn)介
- 15MW風(fēng)力發(fā)電機(jī)
- 正面管教 讀書分享(課堂PPT)
- 教練技術(shù)CP理論P(yáng)PT課件
- 產(chǎn)品生命周期曲線(高清)
- 機(jī)械工程學(xué)報(bào)標(biāo)準(zhǔn)格式
評(píng)論
0/150
提交評(píng)論