2022屆湖南省婁底市冷水江市重點達標名校中考數(shù)學四模試卷含解析_第1頁
2022屆湖南省婁底市冷水江市重點達標名校中考數(shù)學四模試卷含解析_第2頁
2022屆湖南省婁底市冷水江市重點達標名校中考數(shù)學四模試卷含解析_第3頁
2022屆湖南省婁底市冷水江市重點達標名校中考數(shù)學四模試卷含解析_第4頁
2022屆湖南省婁底市冷水江市重點達標名校中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆湖南省婁底市冷水江市重點達標名校中考數(shù)學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在如圖所示的正方形網格中,網格線的交點稱為格點,已知A、B是兩格點,如果C也是圖中的格點,且使得△ABC為等腰直角三角形,則這樣的點C有()A.6個 B.7個 C.8個 D.9個2.計算6m3÷(-3m2)的結果是()A.-3m B.-2m C.2m D.3m3.在一張考卷上,小華寫下如下結論,記正確的個數(shù)是m,錯誤的個數(shù)是n,你認為有公共頂點且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.4.已知圓錐的側面積為10πcm2,側面展開圖的圓心角為36°,則該圓錐的母線長為()A.100cm B.cm C.10cm D.cm5.如圖,每個小正方形的邊長均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.6.已知關于x的不等式3x﹣m+1>0的最小整數(shù)解為2,則實數(shù)m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤77.如圖,⊙O的半徑OC與弦AB交于點D,連結OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分8.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個 B.4個 C.3個 D.2個9.a的倒數(shù)是3,則a的值是()A. B.﹣ C.3 D.﹣310.互聯(lián)網“微商”經營已成為大眾創(chuàng)業(yè)新途徑,某微信平臺上一件商品標價為200元,按標價的五折銷售,仍可獲利20元,則這件商品的進價為()A.120元 B.100元 C.80元 D.60元11.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.12512.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一個正多邊形的內角和是其外角和的3倍,則這個多邊形的邊數(shù)是______.14.某市對九年級學生進行“綜合素質”評價,評價結果分為A,B,C,D,E五個等級.現(xiàn)隨機抽取了500名學生的評價結果作為樣本進行分析,繪制了如圖所示的統(tǒng)計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據此估算該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為_____人.15.一次函數(shù)y=kx+b的圖象如圖所示,當y>0時,x的取值范圍是_____.16.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.17.被歷代數(shù)學家尊為“算經之首”的九章算術是中國古代算法的扛鼎之作九章算術中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕一雀一燕交而處,衡適平并燕、雀重一斤問燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕將一只雀、一只燕交換位置而放,重量相等只雀、6只燕重量為1斤問雀、燕毎只各重多少斤?”設每只雀重x斤,每只燕重y斤,可列方程組為______.18.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=3cm,則EF=________cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總人數(shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?20.(6分)如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關系?請說明理由;若過O點的直線旋轉至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關系成立嗎?請說明理由.21.(6分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.22.(8分)先化簡,再求值:1+xx2-123.(8分)某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.24.(10分)某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學生比較多.為了解學生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調查,過程如下,請補充完整.收集數(shù)據:從選擇籃球和排球的學生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數(shù)據:按如下分數(shù)段整理、描述這兩組樣本數(shù)據:(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格)分析數(shù)據:兩組樣本數(shù)據的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:項目平均數(shù)中位數(shù)眾數(shù)排球8.759.510籃球8.819.259.5得出結論:(1)如果全校有160人選擇籃球項目,達到優(yōu)秀的人數(shù)約為_________人;(2)初二年級的小明和小軍看到上面數(shù)據后,小明說:排球項目整體水平較高.小軍說:籃球項目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個不同的角度說明推斷的合理性)25.(10分)在數(shù)學實踐活動課上,老師帶領同學們到附近的濕地公園測量園內雕塑的高度.用測角儀在A處測得雕塑頂端點C′的仰角為30°,再往雕塑方向前進4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結果不取近似值.)26.(12分)在平面直角坐標系xOy中有不重合的兩個點與.若Q、P為某個直角三角形的兩個銳角頂點,當該直角三角形的兩條直角邊分別與x軸或y軸平行(或重合),則我們將該直角三角形的兩條直角邊的邊長之和稱為點Q與點P之間的“直距”記做,特別地,當PQ與某條坐標軸平行(或重合)時,線段PQ的長即為點Q與點P之間的“直距”.例如下圖中,點,點,此時點Q與點P之間的“直距”.(1)①已知O為坐標原點,點,,則_________,_________;②點C在直線上,求出的最小值;(2)點E是以原點O為圓心,1為半徑的圓上的一個動點,點F是直線上一動點.直接寫出點E與點F之間“直距”的最小值.27.(12分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據題意,結合圖形,分兩種情況討論:①AB為等腰△ABC底邊;②AB為等腰△ABC其中的一條腰.【詳解】如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有2個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有4個.故選:C.【點睛】本題考查了等腰三角形的判定;解答本題關鍵是根據題意,畫出符合實際條件的圖形,再利用數(shù)學知識來求解.數(shù)形結合的思想是數(shù)學解題中很重要的解題思想.2、B【解析】

根據單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式計算,然后選取答案即可.【詳解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故選B.3、D【解析】

首先判斷出四個結論的錯誤個數(shù)和正確個數(shù),進而可得m、n的值,再計算出即可.【詳解】解:有公共頂點且相等的兩個角是對頂角,錯誤;

,正確;

,錯誤;

若,則它們互余,錯誤;

則,,

,

故選D.【點睛】此題主要考查了二次根式的乘除、對頂角、科學記數(shù)法、余角和負整數(shù)指數(shù)冪,關鍵是正確確定m、n的值.4、C【解析】

圓錐的側面展開圖是扇形,利用扇形的面積公式可求得圓錐的母線長.【詳解】設母線長為R,則圓錐的側面積==10π,∴R=10cm,故選C.【點睛】本題考查了圓錐的計算,熟練掌握扇形面積是解題的關鍵.5、B【解析】

根據相似三角形的判定方法一一判斷即可.【詳解】解:因為中有一個角是135°,選項中,有135°角的三角形只有B,且滿足兩邊成比例夾角相等,故選:B.【點睛】本題考查相似三角形的性質,解題的關鍵是學會利用數(shù)形結合的思想解決問題,屬于中考??碱}型.6、A【解析】

先解出不等式,然后根據最小整數(shù)解為2得出關于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數(shù)解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數(shù)解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關鍵.7、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.8、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數(shù)共有3個.故選C.考點:等腰三角形的性質;勾股定理.9、A【解析】

根據倒數(shù)的定義進行解答即可.【詳解】∵a的倒數(shù)是3,∴3a=1,解得:a=.故選A.【點睛】本題考查的是倒數(shù)的定義,即乘積為1的兩個數(shù)叫互為倒數(shù).10、C【解析】

解:設該商品的進價為x元/件,依題意得:(x+20)÷=200,解得:x=1.∴該商品的進價為1元/件.故選C.11、B【解析】

根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.12、B【解析】試題解析:如圖所示:設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據題意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=;故選B.【點睛】本題考查了解直角三角形、含30°角的直角三角形的性質、等腰三角形的性質、三角函數(shù)等,通過作輔助線求出AM是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、8【解析】

解:設邊數(shù)為n,由題意得,180(n-2)=3603解得n=8.所以這個多邊形的邊數(shù)是8.14、16000【解析】

用畢業(yè)生總人數(shù)乘以“綜合素質”等級為A的學生所占的比即可求得結果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學生中“綜合素質”評價結果為“A”的學生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統(tǒng)計圖的應用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據.15、【解析】試題解析:根據圖象和數(shù)據可知,當y>0即圖象在x軸的上方,x>1.

故答案為x>1.16、(0,0)或(0,﹣8)或(﹣6,0)【解析】

由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).17、【解析】

設雀、燕每1只各重x斤、y斤,根據等量關系:今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤,列出方程組求解即可.【詳解】設雀、燕每1只各重x斤、y斤,根據題意,得整理,得故答案為【點睛】考查二元一次方程組得應用,解題的關鍵是分析題意,找出題中的等量關系.18、3【解析】試題分析:根據點D為AB的中點可得:CD為直角三角形斜邊上的中線,根據直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據E、F分別為中點可得:EF為△ABC的中位線,根據中位線的性質可得:EF=AB=3.考點:(1)、直角三角形的性質;(2)、中位線的性質三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)80,20,72;(2)16,補圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計算即可求出總人數(shù),再用總人數(shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計算即可得解:樣本中的總人數(shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補全統(tǒng)計圖即可.(3)設原來開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數(shù)和開私家車的人數(shù),列式不等式,求解即可.試題解析:解:(1)80,20,72.(2)騎自行車的人數(shù)為:80×20%=16人,補全統(tǒng)計圖如圖所示;(3)設原來開私家車的人中有x人改為騎自行車,由題意得,1580答:原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.頻數(shù)、頻率和總量的關系;4.一元一次不等式的應用.20、詳見解析.【解析】

(1)根據全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性質得∠DAC=∠BCA,可證AD∥BC,根據平行線的性質得出∠1=∠1;(1)(3)和(1)的證法完全一樣.先證△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,從而∠1=∠1.【詳解】證明:∠1與∠1相等.在△ADC與△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠1.②③圖形同理可證,△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,∠1=∠1.21、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣1.當x=﹣時,原式=(﹣)2﹣1=3﹣1=﹣2.【解析】應用整式的混合運算法則進行化簡,最后代入x值求值.22、3+3【解析】

先化簡分式,再計算x的值,最后把x的值代入化簡后的分式,計算出結果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當x=2cos30°+tan45°=2×32=3+1時.xx-1=【點睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關鍵是掌握分式的運算法則和運算順序.23、(1)籃球每個50元,排球每個30元.(2)滿足題意的方案有三種:①購買籃球8個,排球12個;②購買籃球9,排球11個;③購買籃球2個,排球2個;方案①最省錢【解析】試題分析:(1)設籃球每個x元,排球每個y元,根據費用可得等量關系為:購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同,列方程求解即可;(2)不等關系為:購買足球和籃球的總費用不超過1元,列式求得解集后得到相應整數(shù)解,從而求解.試題解析:解:(1)設籃球每個x元,排球每個y元,依題意,得:解得.答:籃球每個50元,排球每個30元.(2)設購買籃球m個,則購買排球(20-m)個,依題意,得:50m+30(20-m)≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵籃球的個數(shù)必須為整數(shù),∴只能取8、9、2.∴滿足題意的方案有三種:①購買籃球8個,排球12個,費用為760元;②購買籃球9,排球11個,費用為780元;③購買籃球2個,排球2個,費用為1元.以上三個方案中,方案①最省錢.點睛:本題主要考查了二元一次方程組及一元一次不等式的應用;得到相應總費用的關系式是解答本題的關鍵.24、130小明平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【解析】

根據抽取的16人中成績達到優(yōu)秀的百分比,即可得到全校達到優(yōu)秀的人數(shù);根據平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高,即可得到結論.【詳解】解:補全表格成績:人數(shù)項目10排球11275籃球021103達到優(yōu)秀的人數(shù)約為(人);故答案為130;同意小明的看法,理由為:平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高答案不唯一,理由需支持判斷結論故答案為小明,平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【點睛】本題考查眾數(shù)、中位數(shù),平均數(shù)的應用,解題的關鍵是掌握眾數(shù)、中位數(shù)、平均數(shù)的定義以及用樣本估計總體.25、該雕塑的高度為(2+2)米.【解析】

過點C作CD⊥AB,設CD=x,由∠CBD=45°知BD=CD=x米,根據tanA=列出關于x的方程,解之可得.【詳解】解:如圖,過點C作CD⊥AB,交AB延長線于點D,設CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:該雕塑的高度為(2+2)米.【點睛】本題主要考查解直角三角形的應用-仰角俯角問題,解題的關鍵是根據題意構建直角三角形,并熟練掌握三角函數(shù)的應用.26、(1)①3,1;②最小值為3;(1)【解析】

(1)①根據點Q與點P之間的“直距”的定義計算即可;②如圖3中,由題意,當DCO為定值時,點C的軌跡是以點O為中心的正方形(如左邊圖),當DCO=3時,該正方形的一邊與直線y=-x+3重合(如右邊圖),此時DCO定值最小,最小值為3;(1)如圖4中,平移直線y=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論