版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省龍巖市龍巖第一中學2024屆高一數(shù)學第二學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則下列不等式成立的是()A. B. C. D.2.已知兩個等差數(shù)列,的前項和分別為,,若對任意的正整數(shù),都有,則等于()A.1 B. C. D.3.在中,若,則是()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形4.設等比數(shù)列的公比,前項和為,則()A. B. C. D.5.設滿足約束條件,則的最大值為()A.7 B.6 C.5 D.36.某數(shù)學競賽小組有3名男同學和2名女同學,現(xiàn)從這5名同學中隨機選出2人參加數(shù)學競賽(每人被選到的可能性相同).則選出的2人中恰有1名男同學和1名女同學的概率為()A. B. C. D.7.已知實數(shù)滿足且,則下列關系中一定正確的是()A. B. C. D.8.如圖是一個正四棱錐,它的俯視圖是()A. B.C. D.9.函數(shù)的圖像的一條對稱軸是()A. B. C. D.10.函數(shù)的最小正周期是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前項和,那么數(shù)列的通項公式為__________.12.已知點P(tanα,cosα)在第三象限,則角α的終邊在第________象限.13.若直線與圓有公共點,則實數(shù)的取值范圍是__________.14.已知函數(shù)的圖象如圖所示,則不等式的解集為______.15.在ΔABC中,a比c長4,b比c長2,且最大角的余弦值是-12,則16.若函數(shù)圖象各點的橫坐標縮短為原來的一半,再向左平移個單位,得到的函數(shù)圖象離原點最近的的對稱中心是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求不等式的解集;(2)若當時,恒成立,求實數(shù)的取值范圍.18.已知數(shù)列的前項和為,且滿足,().(Ⅰ)求的值,并求數(shù)列的通項公式;(Ⅱ)設數(shù)列的前項和為,求證:().19.在已知數(shù)列中,,.(1)若數(shù)列中,,求證:數(shù)列是等比數(shù)列;(2)設數(shù)列、的前項和分別為、,是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出的值;若不存在,請說明理由.20.眉山市位于四川西南,有“千載詩書城,人文第一州”的美譽,這里是大文豪蘇軾、蘇洵、蘇轍的故鄉(xiāng),也是人們旅游的好地方.在今年的國慶黃金周,為了豐富游客的文化生活,每天在東坡故里三蘇祠舉行“三蘇文化”知識競賽.已知甲、乙兩隊參賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響.(1)分別求甲隊總得分為0分;2分的概率;(2)求甲隊得2分乙隊得1分的概率.21.已知點,,曲線任意一點滿足.(1)求曲線的方程;(2)設點,問是否存在過定點的直線與曲線相交于不同兩點,無論直線如何運動,軸都平分,若存在,求出點坐標,若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
利用排除法,取,,可排除錯誤選項,再結合函數(shù)的單調性,可證明D正確.【詳解】取,,可排除A,B,C,由函數(shù)是上的增函數(shù),又,所以,即選項D正確.故選:D.【點睛】本題考查不等式的性質,考查學生的推理論證能力,屬于基礎題.2、B【解析】
利用等差數(shù)列的性質將化為同底的,再化簡,將分子分母配湊成前n項和的形式,再利用題干條件,計算?!驹斀狻俊叩炔顢?shù)列,的前項和分別為,,對任意的正整數(shù),都有,∴.故選B.【點睛】本題考查等差數(shù)列的性質的應用,屬于中檔題。3、A【解析】
首先根據(jù)降冪公式把等式右邊降冪你,再根據(jù)把換成與的關系,進一步化簡即可.【詳解】,,,選A.【點睛】本題主要考查了二倍角,兩角和與差的余弦等,需熟記兩角和與差的正弦余弦等相關公式,以及特殊三角函數(shù)的值是解決本題的關鍵,屬于基礎題.4、C【解析】
利用等比數(shù)列的前n項和公式表示出,利用等比數(shù)列的通項公式表示出,計算即可得出答案?!驹斀狻恳驗椋怨蔬xC【點睛】本題考查等比數(shù)列的通項公式與前n項和公式,屬于基礎題。5、A【解析】
考點:簡單線性規(guī)劃.專題:計算題.分析:首先作出可行域,再作出直線l0:y=-3x,將l0平移與可行域有公共點,直線y=-3x+z在y軸上的截距最大時,z有最大值,求出此時直線y=-3x+z經(jīng)過的可行域內(nèi)的點A的坐標,代入z=3x+y中即可.解:如圖,作出可行域,作出直線l0:y=-3x,將l0平移至過點A(3,-2)處時,函數(shù)z=3x+y有最大值1.故選A.點評:本題考查線性規(guī)劃問題,考查數(shù)形結合思想.解答的步驟是有兩種方法:一種是:畫出可行域畫法,標明函數(shù)幾何意義,得出最優(yōu)解.另一種方法是:由約束條件畫出可行域,求出可行域各個角點的坐標,將坐標逐一代入目標函數(shù),驗證,求出最優(yōu)解.6、A【解析】
把5名學生編號,然后寫出任取2人的所有可能,按要求計數(shù)后可得概率.【詳解】3名男生編號為,兩名女生編號為,任選2人的所有情形為:,,共10種,其中恰有1名男生1名女生的有共6種,所以所求概率為.【點睛】本題考查古典概型,方法是列舉法.7、D【解析】
由已知得,然后根據(jù)不等式的性質判斷.【詳解】由且,,由得,A錯;由得,B錯;由于可能為0,C錯;由已知得,則,D正確.故選:D.【點睛】本題考查不等式的性質,掌握不等式性質是解題關鍵,特別是性質:不等式兩同乘以一個正數(shù),不等號方向不變,不等式兩邊同乘以一個負數(shù),不等號方向改變.8、D【解析】
根據(jù)正四棱錐的特征直接判定即可.【詳解】正四棱錐俯視圖可以看到四條側棱與頂點,且整體呈正方形.故選:D【點睛】本題主要考查了正四棱錐的俯視圖,屬于基礎題.9、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.10、C【解析】
將函數(shù)化為,再根據(jù)周期公式可得答案.【詳解】因為=,所以最小正周期.故選:C【點睛】本題考查了兩角和的正弦公式的逆用,考查了正弦型函數(shù)的周期公式,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
運用數(shù)列的遞推式即可得到數(shù)列通項公式.【詳解】數(shù)列的前項和,當時,得;當時,;綜上可得故答案為:【點睛】本題考查數(shù)列的通項與前項和的關系,考查分類討論思想的運用,求解時要注意把通項公式寫成分段的形式.12、二【解析】
由點P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【詳解】因為點P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點評:本題考查第三象限內(nèi)的點的坐標的符號,以及三角函數(shù)在各個象限內(nèi)的符號.13、【解析】
直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)的取值范圍是.【點睛】本題考查直線與圓的位置關系,點到直線距離公式是常用方法.14、【解析】
根據(jù)函數(shù)圖象以及不等式的等價關系即可.【詳解】解:不等式等價為或,
則,或,
故不等式的解集是.
故答案為:.【點睛】本題主要考查不等式的求解,根據(jù)不等式的等價性結合圖象之間的關系是解決本題的關鍵.15、15【解析】
由a比c長4,b比c長2,用c表示出a與b,可得出a為最大邊,即A為最大角,可得出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值求出A的度數(shù),同時利用余弦定理表示出cosA,將表示出的a與b代入,并根據(jù)最大角的余弦值,得到關于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面積公式即可求出三角形ABC的面積.【詳解】根據(jù)題意得:a=c+4,b=c+2,則a為最長邊,∴A為最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c?3)(解得:c=3或c=?2(舍去),∴a=3+4=7,b=3+2=5,則△ABC的面積S=12bcsinA=15故答案為:153【點睛】余弦定理一定要熟記兩種形式:(1)a2=b2+16、【解析】
由二倍角公式化簡函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結合正弦函數(shù)性質得對稱中心.【詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對值最小的是,因此所求對稱中心為.故答案為:.【點睛】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質,考查二倍角公式,掌握正弦函數(shù)性質是解題關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)不等式可化為:,比較與的大小,進而求出解集.(2)恒成立即恒成立,則,進而求得答案.【詳解】解:(1)不等式可化為:,①當時,不等無解;②當時,不等式的解集為;③當時,不等式的解集為.(2)由可化為:,必有:,化為,解得:.【點睛】本題考查含參不等式的解法以及恒成立問題,屬于一般題.18、(Ⅰ),,(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)和項與通項關系得,利用等比數(shù)列定義求得結果(Ⅱ)利用放縮法以及等比數(shù)列求和公式證得結果【詳解】(Ⅰ),由得,兩式相減得故,又所以數(shù)列是以2為首項,公比為2的等比數(shù)列,因此,即.(Ⅱ)當時,,所以.當時,故又當時,,.因此對一切成立.【點睛】本題主要考查了利用和的關系以及構造法求數(shù)列的通項公式,同時考查利用放縮法證明數(shù)列不等式,解題難點是如何放縮,意在考查學生的數(shù)學建模能力和數(shù)學運算能力。19、(1)見解析;(2)存在,.【解析】
(1)利用等比數(shù)列的定義結合數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列為等比數(shù)列,并可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用分組求和法與等比數(shù)列的求和公式分別求出數(shù)列、,設,列出關于、、的方程組,解出即可.【詳解】(1)在數(shù)列中,,,則,,且,數(shù)列是以為首項,為公比的等比數(shù)列,;(2),整理得,,,,所以,,若數(shù)列為等差數(shù)列,可設,則,即,則,解得,因此,存在實數(shù),使得數(shù)列為等差數(shù)列.【點睛】本題考查等差數(shù)列的證明、數(shù)列求和以及等差數(shù)列的存在性問題,熟悉等差數(shù)列的定義和通項公式的結構是解題的關鍵,考查推理能力與運算求解能力,屬于中等題.20、(1)0分概率;2分概率;(2)【解析】
(1)記“甲隊總得分為0分”為事件,“甲隊總得分為2分”為事件,分析可知A事件三人都沒有答對,按相互獨立事件同時發(fā)生計算概率,B事件即甲隊三人中有1人答錯,其余兩人答對,由n次獨立事件恰有k次發(fā)生計算即可(2)記“乙隊得1分”為事件,“甲隊得2分乙隊得1分”為事件,分別有互斥事件概率加法公式及相互獨立事件乘法公式計算即可.【詳解】(1)記“甲隊總得分為0分”為事件,“甲隊總得分為2分”為事件,甲隊總得分為0分,即甲隊三人都回答錯誤,其概率;甲隊總得分為2分,即甲隊三人中有1人答錯,其余兩人答對,其概率;(2)記“乙隊得1分”為事件,“甲隊得2分乙隊得1分”為事件;事件即乙隊三人中有2人答錯,其余1人答對,則,甲隊得2分乙隊得1分即事件、同時發(fā)生,則.【點睛】本題主要考查了相互獨立事件的概率計算,涉及n次獨立事件中恰有k次發(fā)生的概率公式的應用,互斥事件的概率加法公式,屬于中檔題.21、(1);(2)【解析】
(1)設,再根據(jù)化簡求解方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025出租車司機用工合同范本
- 2025商鋪租賃合同簡單的范本
- 全新清算協(xié)議合同-二零二五年度清算與債務重組3篇
- 2025年度全新合同:人工智能輔助駕駛系統(tǒng)研發(fā)與推廣協(xié)議3篇
- 2025年度環(huán)保設備安裝與環(huán)保技術咨詢合同3篇
- 2025年度農(nóng)村房屋改造裝修與農(nóng)村光伏發(fā)電項目合同
- 二零二五年度出國工人勞務輸出與職業(yè)規(guī)劃合同
- 二零二五年度智能漁業(yè)養(yǎng)魚設備共享合作協(xié)議3篇
- 2025年度農(nóng)業(yè)科技賒銷合作協(xié)議3篇
- 2025年度水上安全事故處理與救援合作協(xié)議3篇
- 祭文:侄子侄女祭叔父文
- 一年級科學上冊教學工作總結
- 暨南大學《馬克思主義基本原理概論》題庫歷年期末考試真題分類匯編及答案
- 有色金屬工業(yè)安裝工程質量檢驗評定標準
- 物理學的起源和發(fā)展課件
- 南京大學《宏觀經(jīng)濟學》習題庫及答案
- (中職)《電子商務基礎》第1套試卷試題及答案
- 汽車三維建模虛擬仿真實驗
- 無人機智慧旅游解決方案
- 行車起重作業(yè)風險分析及管控措施
- 健康管理主題PPT模板-健康管理
評論
0/150
提交評論