山東省德州市名校2021-2022學年中考數(shù)學五模試卷含解析_第1頁
山東省德州市名校2021-2022學年中考數(shù)學五模試卷含解析_第2頁
山東省德州市名校2021-2022學年中考數(shù)學五模試卷含解析_第3頁
山東省德州市名校2021-2022學年中考數(shù)學五模試卷含解析_第4頁
山東省德州市名校2021-2022學年中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省德州市名校2021-2022學年中考數(shù)學五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.化簡的結果是()A. B. C. D.2.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐3.如圖,數(shù)軸上的四個點A,B,C,D對應的數(shù)為整數(shù),且AB=BC=CD=1,若|a|+|b|=2,則原點的位置可能是()A.A或B B.B或C C.C或D D.D或A4.下列運算正確的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3?x=x45.在下列四個汽車標志圖案中,能用平移變換來分析其形成過程的圖案是()A. B. C. D.6.估計的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間7.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC8.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±19.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.410.關于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側C.當時,的值隨值的增大而減小 D.的最小值為-3二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結論的序號都填上)12.在矩形ABCD中,AB=6CM,E為直線CD上一點,連接AC,BE,若AC與BE交與點F,DE=2,則EF:BE=________。13.下列說法正確的是_____.(請直接填寫序號)①“若a>b,則>.”是真命題.②六邊形的內(nèi)角和是其外角和的2倍.③函數(shù)y=的自變量的取值范圍是x≥﹣1.④三角形的中位線平行于第三邊,并且等于第三邊的一半.⑤正方形既是軸對稱圖形,又是中心對稱圖形.14.某校準備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組,參加區(qū)青少年科技創(chuàng)新大賽,表格反映的是各組平時成績的平均數(shù)(單位:分)及方差S2,如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應選的組是_____.甲乙丙丁7887s211.20.91.815.已知b是a,c的比例中項,若a=4,c=16,則b=________.16.因式分解:3a3﹣3a=_____.三、解答題(共8題,共72分)17.(8分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,18.(8分)計算:1219.(8分)先化簡,再求值÷(x﹣),其中x=.20.(8分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數(shù)表達式為;(2)記△OMP的面積為S,求S與t的函數(shù)關系式;并求t為何值時,S有最大值,并求出最大值.21.(8分)問題提出(1).如圖1,在四邊形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,則四邊形ABCD的面積為_;問題探究(2).如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=22,BC=3,在AD、CD上分別找一點E、F,使得△BEF的周長最小,作出圖像即可.22.(10分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.23.(12分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點,延長DE到點F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當∠ACB=60°時,求證:四邊形BCFE是菱形.24.計算:(1)(2)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

將除法變?yōu)槌朔ǎ喍胃?,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.2、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力以及對立體圖形的認識.3、B【解析】

根據(jù)AB=BC=CD=1,|a|+|b|=2,分四種情況進行討論判斷即可.【詳解】∵AB=BC=CD=1,∴當點A為原點時,|a|+|b|>2,不合題意;當點B為原點時,|a|+|b|=2,符合題意;當點C為原點時,|a|+|b|=2,符合題意;當點D為原點時,|a|+|b|>2,不合題意;故選:B.【點睛】此題主要考查了數(shù)軸以及絕對值,解題時注意:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值.4、D【解析】A.x4+x4=2x4,故錯誤;B.(x2)3=x6,故錯誤;C.(x﹣y)2=x2﹣2xy+y2,故錯誤;D.x3?x=x4,正確,故選D.5、D【解析】

根據(jù)平移不改變圖形的形狀和大小,將題中所示的圖案通過平移后可以得到的圖案是D.【詳解】解:觀察圖形可知圖案D通過平移后可以得到.

故選D.【點睛】本題考查圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀和大小,學生易混淆圖形的平移與旋轉(zhuǎn)或翻轉(zhuǎn).6、D【解析】

尋找小于26的最大平方數(shù)和大于26的最小平方數(shù)即可.【詳解】解:小于26的最大平方數(shù)為25,大于26的最小平方數(shù)為36,故,即:,故選擇D.【點睛】本題考查了二次根式的相關定義.7、A【解析】

根據(jù)折疊的性質(zhì)明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內(nèi)角和外角之間的關系以及等腰三角形的性質(zhì).還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內(nèi)角和.(1)三角形的內(nèi)角和是180度.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.8、C【解析】

根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.9、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關鍵.10、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③④【解析】

①可用特殊值法證明,當為的中點時,,可見.②可連接,交于點,先根據(jù)證明,得到,根據(jù)矩形的性質(zhì)可得,故,又因為,故,故.③先證明,得到,再根據(jù),得到,代換可得.④根據(jù),可知當取最小值時,也取最小值,根據(jù)點到直線的距離也就是垂線段最短可得,當時,取最小值,再通過計算可得.【詳解】解:①錯誤.當為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質(zhì),全等三角形與相似三角形的性質(zhì)與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關知識點是解答關鍵.12、4:7或2:5【解析】

根據(jù)E在CD上和CD的延長線上,運用相似三角形分類討論即可.【詳解】解:當E在線段CD上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=2k,BF=3k∴BE=BF+EF=5k∴EF:BE=2k∶5k=2∶5當當E在線段CD的延長線上如圖:∵矩形ABCD∴AB∥CD∴△ABF∽△CFE∴設,即EF=4k,BF=3k∴BE=BF+EF=7k∴EF:BE=4k∶7k=4∶7故答案為:4:7或2:5.【點睛】本題以矩形為載體,考查了相似三角形的性質(zhì),解題的關鍵在于根據(jù)圖形分類討論,即數(shù)形結合的靈活應用.13、②④⑤【解析】

根據(jù)不等式的性質(zhì)可確定①的對錯,根據(jù)多邊形的內(nèi)外角和可確定②的對錯,根據(jù)函數(shù)自變量的取值范圍可確定③的對錯,根據(jù)三角形中位線的性質(zhì)可確定④的對錯,根據(jù)正方形的性質(zhì)可確定⑤的對錯.【詳解】①“若a>b,當c<0時,則<,故①是假命題;②六邊形的內(nèi)角和是其外角和的2倍,根據(jù)②真命題;③函數(shù)y=的自變量的取值范圍是x≥﹣1且x≠0,故③是假命題;④三角形的中位線平行于第三邊,并且等于第三邊的一半,故④是真命題;⑤正方形既是軸對稱圖形,又是中心對稱圖形,故⑤是真命題;故答案為②④⑤【點睛】本題考查了不等式的性質(zhì)、多邊形的內(nèi)外角和、函數(shù)自變量的取值范圍、三角形中位線的性質(zhì)、正方形的性質(zhì),解答本題的關鍵是熟練掌握各知識點.14、丙【解析】

先比較平均數(shù)得到乙組和丙組成績較好,然后比較方差得到丙組的狀態(tài)穩(wěn)定,于是可決定選丙組去參賽.【詳解】因為乙組、丙組的平均數(shù)比甲組、丁組大,而丙組的方差比乙組的小,所以丙組的成績比較穩(wěn)定,所以丙組的成績較好且狀態(tài)穩(wěn)定,應選的組是丙組.故答案為丙.【點睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.15、±8【解析】

根據(jù)比例中項的定義即可求解.【詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【點睛】此題考查了比例中項的定義,如果作為比例線段的內(nèi)項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.16、3a(a+1)(a﹣1).【解析】

首先提取公因式3a,進而利用平方差公式分解因式得出答案.【詳解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案為3a(a+1)(a﹣1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)EC=1.【解析】

(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質(zhì)可推出∠F=∠BDE,再根據(jù)對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結論;(2)根據(jù)解直角三角形和等邊三角形的性質(zhì)即可得到結論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點睛】本題主要考查等腰三角形的判定與性質(zhì)、余角的性質(zhì)、對頂角的性質(zhì)等知識點,關鍵根據(jù)相關的性質(zhì)定理,通過等量代換推出∠F=∠FDA,即可推出結論.18、-1【解析】

先化簡二次根式、計算負整數(shù)指數(shù)冪、分母有理化、去絕對值符號,再合并同類二次根式即可得.【詳解】原式=1﹣4﹣+1﹣=﹣1.【點睛】本題考查了實數(shù)的混合運算,熟練掌握二次根式的性質(zhì)、分母有理化、負整數(shù)指數(shù)冪的意義、絕對值的意義是解答本題的關鍵.19、6【解析】【分析】括號內(nèi)先通分進行分式加減運算,然后再與括號外的分式進行乘除運算,化簡后代入x的值進行計算即可得.【詳解】原式===,當x=,原式==6.【點睛】本題考查了分式的化簡求值,根據(jù)所給的式子確定運算順序、熟練應用相關的運算法則是解題的關鍵.20、(1),;(2),1,1.【解析】

(1)根據(jù)四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數(shù)的性質(zhì)求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數(shù)與幾何動態(tài)問題,解題的關鍵是根據(jù)題意表達出點的坐標,利用幾何知識列出函數(shù)關系式.21、(1)3,(2)見解析【解析】

(1)易證△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的長,即可求出面積.(2)作點B關于AD的對稱點B’,點B關于CD的對應點B’’,連接B’B’’,與AD、CD交于EF,△AEF即為所求.【詳解】(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∴△ABD≌△CBD(HL)∴∠ADB=∠CDB=∠ADC=30°,∴AB=∴S△ABD==∴四邊形ABCD的面積為2S△ABD=(2)作點B關于AD的對稱點B’,點B關于CD的對應點B’’,連接B’B’’,與AD、CD交于EF,△BEF的周長為BE+EF+BF=B’E+EF+B’’F=B’B’’為最短.故此時△BEF的周長最小.【點睛】此題主要考查含30°的直角三角形與對稱性的應用,解題的關鍵是根據(jù)題意作出相應的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論