江蘇省常州市鐘樓區(qū)二十四中學2021-2022學年十校聯(lián)考最后數(shù)學試題含解析_第1頁
江蘇省常州市鐘樓區(qū)二十四中學2021-2022學年十校聯(lián)考最后數(shù)學試題含解析_第2頁
江蘇省常州市鐘樓區(qū)二十四中學2021-2022學年十校聯(lián)考最后數(shù)學試題含解析_第3頁
江蘇省常州市鐘樓區(qū)二十四中學2021-2022學年十校聯(lián)考最后數(shù)學試題含解析_第4頁
江蘇省常州市鐘樓區(qū)二十四中學2021-2022學年十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省常州市鐘樓區(qū)二十四中學2021-2022學年十校聯(lián)考最后數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系中,把直線y=x向左平移一個單位長度后,所得直線的解析式為()A.y=x+1B.y=x-1C.y=xD.y=x-22.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a>3 B.a<3 C.a≥3 D.a≤33.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.4.如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE5.下列二次根式中,與是同類二次根式的是()A. B. C. D.6.下列各式計算正確的是()A. B. C. D.7.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.8.化簡的結果是()A. B. C. D.9.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)10.如果與互補,與互余,則與的關系是()A. B.C. D.以上都不對二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:①OA=OD;②AD⊥EF;③當∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)12.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點A順時針旋轉90°得矩形AEFG,連接CG、EG,則∠CGE=________.13.如圖,菱形OABC的頂點O是原點,頂點B在y軸上,菱形的兩條對角線的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點C,則k的值為.14.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤15.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.16.如圖,AB∥CD,∠1=62°,FG平分∠EFD,則∠2=.三、解答題(共8題,共72分)17.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0)(1)求拋物線的表達式;(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標.18.(8分)如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點O、B、C、A、P在同一平面內,求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)19.(8分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.20.(8分)(1)計算:|-1|+(2017-π)0-()-1-3tan30°+;(2)化簡:(+)÷,并在2,3,4,5這四個數(shù)中取一個合適的數(shù)作為a的值代入求值.21.(8分)某市旅游景區(qū)有A,B,C,D,E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:(1)2018年春節(jié)期間,該市A,B,C,D,E這五個景點共接待游客萬人,扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.(2)甲,乙兩個旅行團在A,B,D三個景點中隨機選擇一個,這兩個旅行團選中同一景點的概率是.22.(10分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).23.(12分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.24.某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】向左平移一個單位長度后解析式為:y=x+1.故選A.點睛:掌握一次函數(shù)的平移.2、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.3、C【解析】

根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應邊應該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應關系是關鍵.4、B【解析】

先證明四邊形DBCE為平行四邊形,再根據(jù)矩形的判定進行解答.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE為矩形,故本選項錯誤;B、∵對角線互相垂直的平行四邊形為菱形,不一定為矩形,故本選項正確;C、∵∠ADB=90°,∴∠EDB=90°,∴?DBCE為矩形,故本選項錯誤;D、∵CE⊥DE,∴∠CED=90°,∴?DBCE為矩形,故本選項錯誤,故選B.【點睛】本題考查了平行四邊形的性質與判定,矩形的判定等,熟練掌握相關的判定定理與性質定理是解題的關鍵.5、C【解析】

根據(jù)二次根式的性質把各個二次根式化簡,根據(jù)同類二次根式的定義判斷即可.【詳解】A.|a|與不是同類二次根式;B.與不是同類二次根式;C.2與是同類二次根式;D.與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的定義,一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式.6、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.7、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.8、D【解析】

將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.9、A【解析】

直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.10、C【解析】

根據(jù)∠1與∠2互補,∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進行運算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點睛】此題主要記住互為余角的兩個角的和為90°,互為補角的兩個角的和為180度.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③④【解析】試題解析:根據(jù)已知條件不能推出OA=OD,∴①錯誤;∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正確;∵∠BAC=90°,∠AED=∠AFD=90°,∴四邊形AEDF是矩形,∵AE=AF,∴四邊形AEDF是正方形,∴③正確;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正確;∴②③④正確,12、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為13、-6【解析】

分析:∵菱形的兩條對角線的長分別是6和4,∴A(﹣3,2).∵點A在反比例函數(shù)的圖象上,∴,解得k=-6.【詳解】請在此輸入詳解!14、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結論為:②③.考點:1.相似三角形的判定與性質;2.全等三角形的判定與性質.15、【解析】

設該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關鍵.16、31°.【解析】試題分析:由AB∥CD,根據(jù)平行線的性質得∠1=∠EFD=62°,然后根據(jù)角平分線的定義即可得到∠2的度數(shù).∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考點:平行線的性質.三、解答題(共8題,共72分)17、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知拋物線與x軸的交點坐標,則可利用交點式求出拋物線解析式;(2)根據(jù)二次函數(shù)圖象上點的坐標特征,可設P(t,-t2+4t-3),根據(jù)三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對值得到兩個一元二次方程,再解方程求出t即可得到P點坐標.【詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設P(t,﹣t2+4t﹣3),因為S△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當﹣t2+4t﹣3=1時,t1=t2=2,此時P點坐標為(2,1);當﹣t2+4t﹣3=﹣1時,t1=2+,t2=2﹣,此時P點坐標為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.18、【解析】

過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據(jù)CD﹣BD=BC,列出方程,求出PD=2,進而求出PE=4,AE=5,然后在△APE中利用三角函數(shù)的定義即可求解.【詳解】解:如圖,過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD?tan∠BPD=PD?tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD?tan∠CPD=PD?tan37°.∵CD﹣BD=BC,∴PD?tan37°﹣PD?tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD?tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴.19、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關于直線BC對稱的點D'的坐標;(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標為(9,0),綜上所述,滿足條件的點P坐標為(1,0)或(9,0).【點睛】本題考查了二次函數(shù)的綜合運用.關鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點的坐標,學會分類討論,不能漏解.20、(1)-2(2)a+3,7【解析】

(1)先根據(jù)絕對值、零次方、負整數(shù)指數(shù)冪、立方根的意義和特殊角的三角函數(shù)值把每項化簡,再按照實數(shù)的運算法則計算即可;(2)先根據(jù)分式的運算法則把(+)÷化簡,再從2,3,4,5中選一個使原分式有意義的值代入計算即可.【詳解】(1)原式=-1+1-4-3×+2=-2;(2)原式=[-]÷=(-)÷=×=a+3,∵a≠-3,2,3,∴a=4或a=5,取a=4,則原式=7.【點睛】本題考查了實數(shù)的混合運算,分式的化簡求值,熟練掌握特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪、分式的運算法則是解答本題的關鍵.21、(1)50,43.2°,補圖見解析;(2).【解析】

(1)由A景點的人數(shù)以及百分比進行計算即可得到該市周邊景點共接待游客數(shù);再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進行計算即可;根據(jù)B景點接待游客數(shù)補全條形統(tǒng)計圖;

(2)根據(jù)甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據(jù)概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市景點共接待游客數(shù)為:15÷30%=50(萬人),

E景點所對應的圓心角的度數(shù)是:B景點人數(shù)為:50×24%=12(萬人),

補全條形統(tǒng)計圖如下:

故答案是:50,43.2o.

(2)畫樹狀圖可得:

∵共有9種可能出現(xiàn)的結果,這些結果出現(xiàn)的可能性相等,其中同時選擇去同一個景點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論