版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
IncreasingElectricPowerSystemFlexibility
TheRoleofIndusTRIalelecTRIfIcaTIonandGReenhydRoGenPRoducTIon
AReportofthe
ES
EnErgySyStEmSIntEgratIongroup
EnergySystemsIntegrationGroup’s
FlexibilityResourcesTaskForce
January2022
1
ESIG
IP
AboutESIG
TheEnergySystemsIntegrationGroupisanonprofitorganization
thatmarshalstheexpertiseoftheelectricityindustry’stechnical
communitytosupportgridtransformationandenergysystems
integrationandoperation.Moreinformationisavailableat
https://www.esig.energy
.
ESIGPublicationsAvailableOnline
Thisreportisavailableat
https://www.esig.energy/
reports-briefs.
GetinTouch
Tolearnmoreaboutthetopicsdiscussedinthisreportorformore
informationabouttheEnergySystemsIntegrationGroup,please
sendanemailto
info@esig.energy
.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupii
IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationand
GreenHydrogenProduction
AReportoftheFlexibilityResourcesTaskForce
oftheEnergySystemsIntegrationGroup
Preparedby
AidanTuohy,ElectricPowerResearchInstitute
NiallMacDowell,ImperialCollegeLondon
TaskForceMembers
WilliamD’haeseleer,KULeuven
ElizabethEndler,Shell
AnthonyKu,NICEAmericaResearch
NiallMacDowell,ImperialCollegeLondon
PierluigiMancarella,UniversityofMelbourne
JuliaMatevosyan,EnergySystemsIntegrationGroup
TobyPrice,AustralianElectricityMarketOperator
AidanTuohy,ElectricPowerResearchInstitute
SuggestedCitation
FlexibilityResourcesTaskForce.2022.IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationandGreenHydrogenProduction.Reston,VA:EnergySystemsIntegrationGroup.
https://www.esig.energy/
reports-briefs.
Thisworkwassupportedbyfundsfromthe
AmericanCouncilonRenewableEnergy(ACORE).
Thetaskforcewouldliketoacknowledgethevaluableinput
andsupportofKarinMatchettinpreparingthisreport.
Design:DavidGerratt/NonprofitD
?2022EnergySystemsIntegrationGroup
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiii
Contents
1EvolvingReliabilityNeedsforaDecarbonizedGrid
1ACriticalNeedforNewSourcesofFlexibility
2ServicesProvidedbyIndustrialElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem
3IndustrialElectrificationandElectricPowerSystemFlexibility
3ElectricityUseinIndustryToday
3PathwaysforContributionofEIIstoDecarbonization
8ProvisionofFlexibilityfromEnergy-IntensiveIndustries
8IncreasedDemandasaResultofIncreasedElectrificationofIndustry
9ProvisionofDemandResponseviaIndustrialLoads
10ProvisionofGridServices
11BarrierstotheProvisionofFlexibilitybyNewlyElectrifiedLoads
12RoleofHydrogenProductioninGridDecarbonizationandFlexibility
13PotentialApplicationsofHydrogeninthePowerSystem
14ConsiderationsforObtainingFlexibilityfromGreenHydrogen
inaFutureHigh-RenewablesGrid
17ProvisionofGridServices
21AdvancesNeededinSystemPlanning,Operations,andMarketDesign
24References
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiv
EvolvingReliabilityNeeds
foraDecarbonizedGrid
A
selectricpowersystemscontinuetodecarbonizeandlevelsofrenewableenergycontinuetorise,sourcesofsystemflexibilitywillbecomeincreas-inglyimportant.Asflexibilityfromtraditionalresourcesmaybereducedwiththeretirementofconventional
coal-andnaturalgas–firedgeneration,othersources
suchasdemand-sideflexibilitywillbecomemuchmoreimportant.Concurrently,theincreasedelectrificationoftheoverallenergysystemwillcreatenewloadson
theelectricpowersystem,whichwillhavethepotentialtocontributetosuchsystemflexibility.
Akeyissueforelectricitysystemoperationsandplan-ningistowhatextentthenewloadsmaycontributetosystemflexibility:whetherandhowtheseloadscanshiftelectricalenergydemandfromperiodswhenrenewableelectricityislessabundanttoperiodswhenthereis
alargeamountavailable.
ACriticalNeedforNewSources
ofFlexibility
Manydecarbonizationstudiesdemonstratetheincreas-ingimportanceofthisflexibilityascleanenergy,particu-larlyvariablerenewablessuchaswindandsolar,becomesalargerportionoftheresourcemix(EPRI,2021;Larsonetal.,2020;Williamsetal.,2021).Forexample,hydro-genproductionandtheelectrificationofindustrialloadsareoftencitedasimportantsourcesofflexibilityaslevelsofrenewablessurpass80or90percentoftotalelectricity(EPRI,2021).Atsuchhighlevelsofrenewables,the
needtoshiftenergyacrosstime(andpotentiallyspace),aswellastheexpectedretirementofexistingsources
offlexibility,meansthatelectricpowersystemflexibilityfromthetypicalsourcestoday—conventionalnaturalgasplants,batteries,interconnectionwithneighboringgrids,
andrenewablesthemselves—mayneedtobesupple-
mentedwithnewsources.
Theneedforflexibilitystemsfromtwoissuesrelated
tosupplyanddemandbalancingofelectricitysystems
thatarereliantonvariablerenewableelectricitygen-
eration:oversupplyofgeneration,andstructuralenergydeficitsduetothevariabilityassociatedwithrenewablegeneration(EPRI,2016).Thefirstissuearisesfromthelimitedcapacityfactorsofwindandsolar.Highelectri-cal-energypenetrationofnaturallyvariablesourcessuchaswindandsolarphotovoltaicscouldresultinsubstan-tialovercapacitycomparedtothepeakloadoftheelec-tricalpowersystem,which,intheabsenceofdedicatedmeasures,wouldleadtonegativenet,orresidual,loadin
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup1
Theabilitytoshiftdemandfromperiods
ofenergydeficitstoperiodswithmore
renewablesavailablecouldbeasignificantsourceofflexibility.Theneedforthisflex-ibilitywillberegion-specificanddependontheparticularmixofgeneration,transmis-sion,andloadontheelectricitysystem.
manyhours.1Whiletheinstantaneousexcesspower
generationcouldalwaysbecurtailed,analternativeistodivertthatelectricpowertosectorsoutsidetheclassicalelectricgridsystem.Thiswouldinvolveusingflexible
electricloadstoincreasedemandtomaintainthesupply/demandbalance.
Thesecondissue,energydeficits,canoccurinsystems
wheretherearelongperiodswithrelativelylittlewindorsolarpowercomparedtosystemdemand,duetoprevail-ingweatherconditions.(Thisislikelytobeparticularlyimportantforwindenergy,asdemonstratedrecently
intheUKandEUregionwherewindwasrelatively
lowforalongperiodoftime.)Insuchcircumstances,
resourcesthatarenotoftenusedwillneedtobeavailabletoprovideenergywhencalledupon.Theabilitytoshiftdemandfromperiodsofenergydeficitstoperiodswithmorerenewablesavailablecouldthereforebeasignifi-
cantsourceofflexibility.Theneedforthisflexibility
willberegion-specificanddependontheparticularmixofgeneration,transmission,andloadontheelectricitysystem.
Theabsolutequantityofflexiblecapacity(howeverde-fined)thatisrequiredtomanageoversupplyofrenew-ableenergyappearslow,givingopportunityforflexibilityviaindustrialelectrification,includinghydrogenproduc-tion,toplayanimportantrole.Currently,theelectrifica-tionofindustrialloadsishappeningslowly,andhydrogenproductionisstillrelativelyexpensive.However,cost
declinesarepredictedforbothoftheseresources,similartowhathasbeenachievedinrecentyearsforwind,solarphotovoltaics,andbatterystorage.In2021,theU.S.
DepartmentofEnergy,forexample,setagoalofreduc-ingthecostofelectrolytichydrogenby80percentto
$1perkilograminonedecade.2
ServicesProvidedbyIndustrial
ElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem
Thisreportlaysoutviablewaysthatindustrialelectri-
ficationandhydrogenproductionmayplayarolein
providingflexibilityinthefutureelectricpowersystem.Whereasmostanalysisinthisspacefocusesontheover-allenergysystemandaspectssuchasthecostreductionrequiredtoenablemoreindustrialelectrificationand
hydrogen,thefocushereisondescribinghowthesetech-nologiesmayimpactandprovideservicestotheelectricpowersystem.Theunderlyingassumptionisafuture
wherelevelsofelectricity-generatingrenewablesare
high,at70percentannualenergypenetrationorhigher,asthisisthepointatwhichtheelectrificationofindus-trialprocessesandtheeconomicproductionofhydrogenwillbothbeneededandbereadytoservethisneed.
Theintentofthisreportistodiscusstheelectricpowersystemsperspectiveforthesenewelectricalloads.Build-ingontheEnergySystemsIntegrationGroup’swork
onrenewableintegrationoverthepastdecades,thisreportlaysouthowveryhighlevelsofrenewable
energycouldbesupportedbyleveragingopportu-nitiesintheindustrialsector.
Thereportfirstdiscussessourcesofindustrialelectrifi-
cationandthepotentialflexibilitythatcouldbederivedfromtheresultinglargeelectricalloadsinenergy-intensiveindustries(EIIs).Itthenexaminesthepotentialrole
ofhydrogenproductioninprovidingflexibilitytothefuturehigh-renewablessystem,withafocusongreenhydrogen.Thereportconcludesbysummarizinghigh-leveloperationsandplanningissuesforpowersystemsandidentifyingkeyareasneedingfurtherwork.
1Netload,orresidualload,aredefinedasthetotalloadminustheinstantaneousgenerationofsolarphotovoltaicsandwind.“Net”and“residual”canbeusedsynonymously.
2See
/eere/fuelcells/hydrogen-shot
.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup2
IndustrialElectrificationand
ElectricPowerSystemFlexibility
ity.Theyprovidethebasisformanychemicals
E
IIsareatthefoundationofthebroadereconomyandenableavastamountofotherindustrialactiv-
usedinindustry,produceconstructionmaterials,supportagricultureandpaperindustries,andfarmore.Theylinktoallothereconomicsectors,arethemselvesextensivelyinterlinked,andaredeeplyconnectedwithinthebroaderenergysystem(seeFigure1,p.4).EIIsareoftenvery
carbon-intensive,andtheycanbehardertodecarbonizethanothersectorssuchastheelectricitysector.One
optionfortheirdecarbonizationistoelectrifytheseindustrialloadsandrelyoncleanelectricitytopowertheloads.Thisisnotsimple,however.Anysignificantchangeintheprovisionofenergyintheseindustries,theiroperation,andtheircoststructurewillhave
profoundandsystemicramificationsacrossthebroadereconomy(Lovins,2021a;2021b).
ElectricityUseinIndustryToday
Theshareofelectricityamongallenergyinputsintheindustrialsectorvarieswidely,withageneralshifttowardincreasedelectricityuseintheindustrialsectorexpectedintheneartomediumterm.Thelowestshare,at14per-cent,isinnon-metallicminerals(mostlycement,glass,andceramicsindustries),andthehighestshareof65percentisinnon-ferrousmetals,composedmostlyofprimary
aluminumproductionthatuseselectrolysistoreduce
aluminumfromaluminumoxide.Electricityismostlyusedformachinedrives,toprovideelectricalcontrol
ofindustrialprocesses,andforsomemeansofelectric
heating(includingelectricarc,infraredradiation,elec-tronbeam,andplasmaheating).Someindustrialelectrictechnologiesuseelectricityasanalternativetodirectlyprovidingheat,forexample,usingmechanicalwork
inmechanicalvaporrecompressionheatpumpsorseparatingmaterialsusingselectivelypermeable
membranesratherthanusingheat.Othermeansof
materialseparationuseelectricpotentialgradients(e.g.,electrodialysis)orelectrolysis(e.g.,electrolyticrefiningofaluminaandcopper).Theincreasingdemandforrenew-ableenergytechnologywillitselfleadtoageneralshifttowardhigherelectricityuseintheindustrialsectorduetotheincreasedproductionandrefiningofrareearth
elementsandpotentialincreaseintherecyclingofmetals.
PathwaysforContributionofEIIs
toDecarbonization
Currently,industryaccountsformorethanone-thirdoftheglobalfinalenergyuse,makingitanessentialsectortodecarbonize.However,EIIs,owingtotheirheteroge-neityandtheneedforhigh-qualityheattotransform
rawmaterialsintomorerefinedmaterials,areparticularlychallengingtodecarbonize.Incontrasttotheelectric
powersector,wherelow-carbonelectricityisusedby
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup3
FIGuRE1
ConnectionsBetweenEnergy-IntensiveIndustriesandtheRestoftheEconomy
Note:TheredtextreferstotheEIIsdiscussedinthisreport.
Source:Wyns,Khandekar,andRobson(2018).
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup4
loadsinexactlythesamewayasfossilfuel–basedelec-tricity,theconceptofabaselineor“archetypal”industryfacilityisdifficulttodefine.Facilities’electricalandnon-electricalloads,operatingprocedures,andpracticesvaryfromlocationtolocationandhaveasignificanttime
dependenceregardingwhentheyareused.Inaddition,manyfacilitieswithinagivensectorusemultiplefuel
sourcesandhavemultiplepointsourcesofcarbondioxide(CO2).
ItisimportanttonotethatEIIshavealreadyplayedanimportantroleinemissionsreductions.Between1990and2015inEurope,EIIsreducedtheirgreenhouse
gasemissionsby36percent,representingapproximately28percentofeconomy-widereductions,despitethefact
thatEIIswereresponsibleforonly15percentoftotal
greenhousegasemissionsintheEuropeanUnionin
2015.Todate,EIIemissionsreductionshavecome
aboutthroughacombinationofimprovementsinenergyefficiency,fuelswitching,andplantclosuresorreducedoutput,largelyasaresultofthe2008financialcrisis.
Therearemanypathwaystofurtheremissionsreduc-
tions,asshowninTable1.Inadditiontofurtherenergyefficiencyimprovements,processintegration,andtheuseofcarboncapture,utilization,andstoragetechnologies(Wei,McMillan,anddelaRueduCan,2019),electri-ficationhasthebroadpotentialtocontributeacrossallsectors,throughbothheatandmechanicalprocesses
andthroughelectrolysisforhydrogenproduction.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup5
Heat
Alargeproportionofindustrialemissionsarisefromtheprovisionofheat(orthermalpower).Giventherapidlyimprovingeconomicsofrenewable/low-carbonelectricalpowerandenergystorage,theelectrificationofEII
heatingneedsisbecomingmoreattractiveasameanstodecarbonizethissector.Hightoveryhightemperatures(above500°C)accountforoverhalfofindustrialheat
demand,andveryhightemperatures(above1000°C)
accountfor33percentofdemand.Electrificationof
heatdemandcanbeappliedacrossmostbasicmaterialsindustries,anditisaparticularlypromisingapproachforemissionsmitigationinindustriessuchasceramics,glass,andpaper.Low-temperatureheat(definedhereaslowerthan300°C)canbeprovidedrelativelyeasilyviaelectricboilersandelectricarc,infrared,induction,dielectric,
directresistance,microwave,andelectronbeamheating.However,toeconomicallyachievetemperaturesapproaching
TABlE1
EmissionsReductionApproachesforVariousEnergy-IntensiveIndustries
Electrification(Heatand
Mechanical)
Electrification(Processes:
Electrolysis/
Electro-
chemistry
ExcludingH2)
Hydrogen(Heatand/orProcess)
Carbon
Capture
and
utilization
Biomass
(Heatand
Feedstock)/Biofuels
Carbon
Capture
and
Storage
Other
(IncludingProcess
Integration)
Steel
xxx
xx
xxx
xxx
x
xxx
Avoidanceofinter-
mediateprocess
stepsandrecycling
ofprocessgases:xxx
Recyclinghigh-qualitysteel:xxx
Chemicalsandfertil-izers
xxx
xxx
xxx
xxx
xxx
xxx(in
particular
foram-
moniaand
ethylene
oxide)
Useofwastestreams(chemicalrecycling):xxx
Cement
Lime
xx
(cement)
x
(lime)
o
(cement)
o
(lime)
x
(cementand
lime)
xxx
(cementandlime)
xxx
(cement)
x
(lime)
xxx
(cementandlime)
Alternativebinders
(cement):xxx
Efficientuseofcementinconcretebyimprovingconcretemixdesign:xxx
Useofwastestreams(cement):xxx
Refining
xx
o
xxx
xxx
xxx
xxx
Efficiency:xxx
Ceramics
xxx
o
xx
x
x
o
Efficiency:xxx
Paper
xx
o
o
o
xxx
o
Efficiency:xxx
Glass
xxx
o
x
o
xxx
o
Higherglassrecycling:xx
Non-
ferrous
metals/
alloys
xxx
xxx
x
x
xxx
x
Efficiency:xxx
Recyclinghighqualitynon-ferrous:xxx
Inertanodes:xxx
o=Limitedornosignificnatapplicationforeseen
x=Possibleapplicationbutnotmainrouteorwide-scaleapplication
xx=Mediumpotentialxxx=Highpotential
xxx=Sectoralreadyappliestechnologyonlargescale(canbeexpandedinsomecases)
Note:Evenafterdecarbonizingheatforcement,reaction-basedemissionsremain.
Source:Wyns,Khandekar,andRobson(2018).
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup6
1,000°C,modificationsofelectricfurnacetechnology
areneeded.Itistechnicallypossibletoelectrifyhigh-
temperatureprocessheatingusing,forexample,electricarcfurnacesorelectriccalciners.Toachievetemperaturesbeyond1,000°C,asisrequiredintheproductionof
cementandglass,significantadditionalresearch,development,anddemonstrationisrequired.
Giventhedeeplyintegratednatureoftheseprocesses,anyalterationtoaparticularelementofaprocesswill
necessarilyinducechangestootheraspects.Electrifica-tionofthefurnacethereforenecessitatesadjustments
tootherstagesofproductionandwillhavecapitalcostimplications.Insomesectors,suchastherefining,steel,chemicals,andcementsectors,theelectrificationofheatcanbeatbestapartialsolutionandwilllikelyhavetobeusedincombinationwithothertechnologiesto
achievefulldecarbonization.
IndustrialProcesses
Processelectrificationisalreadyquitewidelyappliedin,forexample,secondarysteel,non-ferrousmetals,ferro-alloys,andsiliconproduction.Theelectrificationofironandsteelproductioncantakeseveralpossibleroutesandisanareaofactiveinterestformanyintheindustry
(Edie,2021).Onerouteistoincreasethecircularityoftheproductflowintheeconomybyincreasingrecyclingratesandtheuseofsecondarysteel,whichisproducedinelectricarcfurnaces.Ingeneral,steelretainsasignificantoverallrecyclingrate.In2014,thisratestoodat85per-cent(TataSteel,2021);however,whendemandforsteelishigh,thisproportiondropssignificantly—in2016
itwas35.5percent—owingtoamismatchbetween
demandforsteelandavailabilityofscrap(BIR,2020).Lookingbeyondironandsteel,severalothermetals
areproducedthroughelectrolysis,includingaluminum,nickel,andzinc.Theeconomicviabilityofelectrolyticapproachestometalrefiningis,ofcourse,afunction
ofthecostandcarbonintensityofelectricityandthecostofelectrolyzers(Allanore,2014).
Anotheroptionforindirectdecarbonizationviaelectri-fication,asdiscussedinmoredetailinthenextsection,
Hydrogencanplayakeyroleinindustrial
decarbonizationwhenthehydrogenis
producedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasanenergycarrier,asindustrialfeedstockforproductsand
fuels,orforlong-durationenergystorage.
iselectrolytichydrogen.Hydrogencanplayakeyroleinindustrialdecarbonizationwhenthehydrogenispro-ducedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasan
energycarrier,asindustrialfeedstockforproductsandfuels,orforlong-durationenergystorage.
Keytocontinuingtodecarbonizeindustriesthrough
increasingtheelectrificationofindustrialprocesseswillbetheprogressionoftechnologiestotechnologyreadinesslevels(TRL)above7andthefurtherdecarbonizationoftheelectricitygrid.3Sufficienttechnologicalmaturityisnotexpecteduntilthe2030s,duetotheneedtodemon-stratethesetechnologiesandmobilizecapacitytodeploythem,butbythentheymayprovideafruitfulwayto
decarbonizethesystem.Economicincentivesortechno-logicalbreakthroughsmaymakethesetechnologiesrel-evantevensooner;however,2030isalreadywellwithintheplanningtimeframefortheelectricpowerindustry.
Themovetowardfuel-switchingfromnaturalgasto
electricitywillbedrivenbyenergyandenvironmental
policies(EPRI,2018);however,electrificationbenefits
forindustrialprocessingalsoincludenon-energybenefitssuchasproductqualityandyield;processtime,control-lability,andflexibility;andsafety.Forexample,potentialnon-energybenefitsininductionheatingincludefasterstart-up,enhancedprocesscontrollabilityandflexibility,reducedspacerequiredforfuelstorageandhandling,animprovedworkingenvironmentforworkersduetothe
eliminationofcombustionemissions,andlesswasteheat.
3TheTRLscalerunsfrom1through9,with1beingrelatedto(fundamental)researchand9referringtofulltechnologicalmaturity.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup7
ProvisionofFlexibility
fromEnergy-IntensiveIndustries
T
heelectrificationofindustry,acriticalcomponentofindustrialdecarbonization,providesopportuni-tiesforthesectortooffermuch-neededflexibilitytoelectricitygridswithhighlevelsofvariablerenewableenergy.Thisflexibilitycanbeprovidedvialow-orzero-carbongenerationresources(includinghydrogen,dis-
cussedbelow);grid-scaleenergystorage;or,asdiscussedhere,demandresponse.Importantly,theabsolutequan-tityofcurrentlyavailableflexiblecapacitythatisrequiredonavery-high-renewablesgridappearstobelowin
comparisontothetotalinstalledcapacitiesofsupplyanddemandresources;hence,flexibilitythroughindustrialelectrificationcouldintheoryplayanimportantrole.
Astheelectrificationoftheindustrialsectorproceeds,theincreaseddemandforelectricityislikelytorequiresignificantexpansionincleanelectricitygeneration
technologiessuchaswindandsolarphotovoltaics.The
variabilityoftheseresources,inturn,increasestheneedforflexibleloadsthatcanrespondtothechangingout-putofrenewablegenerationonthegrid.Ifhighlyelectri-fiedindustriesareincentivizedtodoso,somewillbeinapositiontoprovidesignificantflexibilitythroughflexibleloadsandtheprovisionofenergystoragethatsupportsgridreliabilityandflexibility.GiventhehighlycoupledwayinwhichtheEIIsandelectricitysystemwillco-
evolve,understandinghowEIIscancontributetothe
flexibilityandreliabilityofthepowersystemiskey.
IncreasedDemandasaResult
ofIncreasedElectrificationofIndustry
Thelarge-scaleelectrificationofEIIswill,directlyor
indirectly,requiresignificantamountsofelectricityto
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup8
operate.InEurope,forexample,EIIsareprojectedtobecomethelargestelectricityconsumerby2050,con-suminganadditional3,000to4,400TWhcompared
to2016levels(a120to180percentincrease)(Eurostat,2021).Manysuchloadswouldbeexpectedtohavea
relativelyconstantdemand,astheunderlyingindustrialprocessesaredesignedtooperateatsteadystate,at
leastintheircurrentform.
InastudybytheElectricPowerResearchInstitute
evaluatingtheimpactofindustrialelectrificationontheelectricitygrid,thescenariowiththehighestlevelsof
electrificationshowedtheelectricityshareofindustry
finalenergydemandincreasingfrom27percentinthe
referencescenarioto45percentin2050(EPRI,2018),demonstratingthatindustrialelectrificationcouldpro-videopportunitiesforcloserintegrationandoptimizationoftheU.S.energysystem.Anotherstudylookingat
Chinafoundthatmaximizingelectrificationusingcom-merciallyavailabletechnologiesinindustriesincludingsteel,foodandbeverages,glass,andpulpandpapercouldincreaseitsindustrialsector’sshareofelectricityconsump-tionin2050fromabout30percentunderbusiness-as-usualassumptionstonearly40percent(Khannaetal.,
2017).
Completelyelectrifyingtheindustrialsectorwould
requireasignificantamountofnewelectricitygenerationcapacity,evenwhenelectrictechnologiesprovideimprovedenergyefficiency.Onestudyexaminedascenarioinwhichelectro-thermaltechnologiesforheatingandelectrolysisformaterialseparationsreplacedallenergyrequirementsofeightEIIsintheEuropeanUnionandestimateda
four-foldincreaseinelectricitydemandby2050(Lech-tenb?hmeretal.,2016).Itfoundthatthereplacementofpetroleum-derivedfuelsandfeedstockswithH2,CO2,
andsyngaswouldinvolvenearly10timesmoreelectric-ityby2050.ThecarbonrequiredtoproducereplacementhydrocarbonscouldeitherbecapturedCO2frompowerplants,capturedfromtheCO2/COportionofsyngas
(CO2/CO+H2),orobtainedfromdirectaircapture.
Switchingfromfossiltonon-fossilindustrialfeedstocksalsogreatlyincreasestheelectricityconsumed.Forex-ample,onestudyanalyzedtheswitchingoffeedstocksfortheproductionofcommonindustrialchemicals
fromfossiltonon-fossilfeedstocksusingelectrolytic
technologies,andestimatedth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)氣肥行業(yè)供需趨勢(shì)發(fā)展風(fēng)險(xiǎn)研究報(bào)告
- 2024年抗變態(tài)反應(yīng)藥項(xiàng)目提案報(bào)告
- 2022年大學(xué)力學(xué)專業(yè)大學(xué)物理二期中考試試卷B卷-附解析
- 2022年大學(xué)土建專業(yè)大學(xué)物理二期末考試試卷B卷-附解析
- 2022年大學(xué)環(huán)境與安全專業(yè)大學(xué)物理下冊(cè)月考試卷B卷-附解析
- 年度應(yīng)急電源產(chǎn)業(yè)分析報(bào)告
- 住宅區(qū)智能停車管理方案
- 管網(wǎng)工程施工現(xiàn)場(chǎng)監(jiān)理方案
- 公共圖書館信息安全意識(shí)活動(dòng)方案
- 公共交通設(shè)施調(diào)試與管理方案
- 北京市海淀區(qū)2024-2025學(xué)年高三第一學(xué)期期中練習(xí)語文試卷含答案
- 江蘇省徐州市銅山區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期中英語試卷(含答案解析)
- 大數(shù)據(jù)處理服務(wù)合同
- 河北省唐山市灤南縣2024-2025學(xué)年七年級(jí)上學(xué)期10月期中數(shù)學(xué)試題
- 劉潤(rùn)年度演講2024
- GB/T 44653-2024六氟化硫(SF6)氣體的現(xiàn)場(chǎng)循環(huán)再利用導(dǎo)則
- GB/T 44540-2024精細(xì)陶瓷陶瓷管材或環(huán)材彈性模量和彎曲強(qiáng)度的測(cè)定缺口環(huán)法
- 道路交通安全法律法規(guī)
- 應(yīng)急管理試題庫
- 緣起、流變與現(xiàn)狀:當(dāng)前中國(guó)古詩詞藝術(shù)歌曲的發(fā)展思考
- 2020行政事業(yè)單位審計(jì)報(bào)告(最新)
評(píng)論
0/150
提交評(píng)論