提高電力系統(tǒng)靈活性-工業(yè)電氣化和綠氫生產(chǎn)的作用_第1頁
提高電力系統(tǒng)靈活性-工業(yè)電氣化和綠氫生產(chǎn)的作用_第2頁
提高電力系統(tǒng)靈活性-工業(yè)電氣化和綠氫生產(chǎn)的作用_第3頁
提高電力系統(tǒng)靈活性-工業(yè)電氣化和綠氫生產(chǎn)的作用_第4頁
提高電力系統(tǒng)靈活性-工業(yè)電氣化和綠氫生產(chǎn)的作用_第5頁
已閱讀5頁,還剩61頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

IncreasingElectricPowerSystemFlexibility

TheRoleofIndusTRIalelecTRIfIcaTIonandGReenhydRoGenPRoducTIon

AReportofthe

ES

EnErgySyStEmSIntEgratIongroup

EnergySystemsIntegrationGroup’s

FlexibilityResourcesTaskForce

January2022

1

ESIG

IP

AboutESIG

TheEnergySystemsIntegrationGroupisanonprofitorganization

thatmarshalstheexpertiseoftheelectricityindustry’stechnical

communitytosupportgridtransformationandenergysystems

integrationandoperation.Moreinformationisavailableat

https://www.esig.energy

.

ESIGPublicationsAvailableOnline

Thisreportisavailableat

https://www.esig.energy/

reports-briefs.

GetinTouch

Tolearnmoreaboutthetopicsdiscussedinthisreportorformore

informationabouttheEnergySystemsIntegrationGroup,please

sendanemailto

info@esig.energy

.

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupii

IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationand

GreenHydrogenProduction

AReportoftheFlexibilityResourcesTaskForce

oftheEnergySystemsIntegrationGroup

Preparedby

AidanTuohy,ElectricPowerResearchInstitute

NiallMacDowell,ImperialCollegeLondon

TaskForceMembers

WilliamD’haeseleer,KULeuven

ElizabethEndler,Shell

AnthonyKu,NICEAmericaResearch

NiallMacDowell,ImperialCollegeLondon

PierluigiMancarella,UniversityofMelbourne

JuliaMatevosyan,EnergySystemsIntegrationGroup

TobyPrice,AustralianElectricityMarketOperator

AidanTuohy,ElectricPowerResearchInstitute

SuggestedCitation

FlexibilityResourcesTaskForce.2022.IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationandGreenHydrogenProduction.Reston,VA:EnergySystemsIntegrationGroup.

https://www.esig.energy/

reports-briefs.

Thisworkwassupportedbyfundsfromthe

AmericanCouncilonRenewableEnergy(ACORE).

Thetaskforcewouldliketoacknowledgethevaluableinput

andsupportofKarinMatchettinpreparingthisreport.

Design:DavidGerratt/NonprofitD

?2022EnergySystemsIntegrationGroup

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiii

Contents

1EvolvingReliabilityNeedsforaDecarbonizedGrid

1ACriticalNeedforNewSourcesofFlexibility

2ServicesProvidedbyIndustrialElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem

3IndustrialElectrificationandElectricPowerSystemFlexibility

3ElectricityUseinIndustryToday

3PathwaysforContributionofEIIstoDecarbonization

8ProvisionofFlexibilityfromEnergy-IntensiveIndustries

8IncreasedDemandasaResultofIncreasedElectrificationofIndustry

9ProvisionofDemandResponseviaIndustrialLoads

10ProvisionofGridServices

11BarrierstotheProvisionofFlexibilitybyNewlyElectrifiedLoads

12RoleofHydrogenProductioninGridDecarbonizationandFlexibility

13PotentialApplicationsofHydrogeninthePowerSystem

14ConsiderationsforObtainingFlexibilityfromGreenHydrogen

inaFutureHigh-RenewablesGrid

17ProvisionofGridServices

21AdvancesNeededinSystemPlanning,Operations,andMarketDesign

24References

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiv

EvolvingReliabilityNeeds

foraDecarbonizedGrid

A

selectricpowersystemscontinuetodecarbonizeandlevelsofrenewableenergycontinuetorise,sourcesofsystemflexibilitywillbecomeincreas-inglyimportant.Asflexibilityfromtraditionalresourcesmaybereducedwiththeretirementofconventional

coal-andnaturalgas–firedgeneration,othersources

suchasdemand-sideflexibilitywillbecomemuchmoreimportant.Concurrently,theincreasedelectrificationoftheoverallenergysystemwillcreatenewloadson

theelectricpowersystem,whichwillhavethepotentialtocontributetosuchsystemflexibility.

Akeyissueforelectricitysystemoperationsandplan-ningistowhatextentthenewloadsmaycontributetosystemflexibility:whetherandhowtheseloadscanshiftelectricalenergydemandfromperiodswhenrenewableelectricityislessabundanttoperiodswhenthereis

alargeamountavailable.

ACriticalNeedforNewSources

ofFlexibility

Manydecarbonizationstudiesdemonstratetheincreas-ingimportanceofthisflexibilityascleanenergy,particu-larlyvariablerenewablessuchaswindandsolar,becomesalargerportionoftheresourcemix(EPRI,2021;Larsonetal.,2020;Williamsetal.,2021).Forexample,hydro-genproductionandtheelectrificationofindustrialloadsareoftencitedasimportantsourcesofflexibilityaslevelsofrenewablessurpass80or90percentoftotalelectricity(EPRI,2021).Atsuchhighlevelsofrenewables,the

needtoshiftenergyacrosstime(andpotentiallyspace),aswellastheexpectedretirementofexistingsources

offlexibility,meansthatelectricpowersystemflexibilityfromthetypicalsourcestoday—conventionalnaturalgasplants,batteries,interconnectionwithneighboringgrids,

andrenewablesthemselves—mayneedtobesupple-

mentedwithnewsources.

Theneedforflexibilitystemsfromtwoissuesrelated

tosupplyanddemandbalancingofelectricitysystems

thatarereliantonvariablerenewableelectricitygen-

eration:oversupplyofgeneration,andstructuralenergydeficitsduetothevariabilityassociatedwithrenewablegeneration(EPRI,2016).Thefirstissuearisesfromthelimitedcapacityfactorsofwindandsolar.Highelectri-cal-energypenetrationofnaturallyvariablesourcessuchaswindandsolarphotovoltaicscouldresultinsubstan-tialovercapacitycomparedtothepeakloadoftheelec-tricalpowersystem,which,intheabsenceofdedicatedmeasures,wouldleadtonegativenet,orresidual,loadin

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup1

Theabilitytoshiftdemandfromperiods

ofenergydeficitstoperiodswithmore

renewablesavailablecouldbeasignificantsourceofflexibility.Theneedforthisflex-ibilitywillberegion-specificanddependontheparticularmixofgeneration,transmis-sion,andloadontheelectricitysystem.

manyhours.1Whiletheinstantaneousexcesspower

generationcouldalwaysbecurtailed,analternativeistodivertthatelectricpowertosectorsoutsidetheclassicalelectricgridsystem.Thiswouldinvolveusingflexible

electricloadstoincreasedemandtomaintainthesupply/demandbalance.

Thesecondissue,energydeficits,canoccurinsystems

wheretherearelongperiodswithrelativelylittlewindorsolarpowercomparedtosystemdemand,duetoprevail-ingweatherconditions.(Thisislikelytobeparticularlyimportantforwindenergy,asdemonstratedrecently

intheUKandEUregionwherewindwasrelatively

lowforalongperiodoftime.)Insuchcircumstances,

resourcesthatarenotoftenusedwillneedtobeavailabletoprovideenergywhencalledupon.Theabilitytoshiftdemandfromperiodsofenergydeficitstoperiodswithmorerenewablesavailablecouldthereforebeasignifi-

cantsourceofflexibility.Theneedforthisflexibility

willberegion-specificanddependontheparticularmixofgeneration,transmission,andloadontheelectricitysystem.

Theabsolutequantityofflexiblecapacity(howeverde-fined)thatisrequiredtomanageoversupplyofrenew-ableenergyappearslow,givingopportunityforflexibilityviaindustrialelectrification,includinghydrogenproduc-tion,toplayanimportantrole.Currently,theelectrifica-tionofindustrialloadsishappeningslowly,andhydrogenproductionisstillrelativelyexpensive.However,cost

declinesarepredictedforbothoftheseresources,similartowhathasbeenachievedinrecentyearsforwind,solarphotovoltaics,andbatterystorage.In2021,theU.S.

DepartmentofEnergy,forexample,setagoalofreduc-ingthecostofelectrolytichydrogenby80percentto

$1perkilograminonedecade.2

ServicesProvidedbyIndustrial

ElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem

Thisreportlaysoutviablewaysthatindustrialelectri-

ficationandhydrogenproductionmayplayarolein

providingflexibilityinthefutureelectricpowersystem.Whereasmostanalysisinthisspacefocusesontheover-allenergysystemandaspectssuchasthecostreductionrequiredtoenablemoreindustrialelectrificationand

hydrogen,thefocushereisondescribinghowthesetech-nologiesmayimpactandprovideservicestotheelectricpowersystem.Theunderlyingassumptionisafuture

wherelevelsofelectricity-generatingrenewablesare

high,at70percentannualenergypenetrationorhigher,asthisisthepointatwhichtheelectrificationofindus-trialprocessesandtheeconomicproductionofhydrogenwillbothbeneededandbereadytoservethisneed.

Theintentofthisreportistodiscusstheelectricpowersystemsperspectiveforthesenewelectricalloads.Build-ingontheEnergySystemsIntegrationGroup’swork

onrenewableintegrationoverthepastdecades,thisreportlaysouthowveryhighlevelsofrenewable

energycouldbesupportedbyleveragingopportu-nitiesintheindustrialsector.

Thereportfirstdiscussessourcesofindustrialelectrifi-

cationandthepotentialflexibilitythatcouldbederivedfromtheresultinglargeelectricalloadsinenergy-intensiveindustries(EIIs).Itthenexaminesthepotentialrole

ofhydrogenproductioninprovidingflexibilitytothefuturehigh-renewablessystem,withafocusongreenhydrogen.Thereportconcludesbysummarizinghigh-leveloperationsandplanningissuesforpowersystemsandidentifyingkeyareasneedingfurtherwork.

1Netload,orresidualload,aredefinedasthetotalloadminustheinstantaneousgenerationofsolarphotovoltaicsandwind.“Net”and“residual”canbeusedsynonymously.

2See

/eere/fuelcells/hydrogen-shot

.

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup2

IndustrialElectrificationand

ElectricPowerSystemFlexibility

ity.Theyprovidethebasisformanychemicals

E

IIsareatthefoundationofthebroadereconomyandenableavastamountofotherindustrialactiv-

usedinindustry,produceconstructionmaterials,supportagricultureandpaperindustries,andfarmore.Theylinktoallothereconomicsectors,arethemselvesextensivelyinterlinked,andaredeeplyconnectedwithinthebroaderenergysystem(seeFigure1,p.4).EIIsareoftenvery

carbon-intensive,andtheycanbehardertodecarbonizethanothersectorssuchastheelectricitysector.One

optionfortheirdecarbonizationistoelectrifytheseindustrialloadsandrelyoncleanelectricitytopowertheloads.Thisisnotsimple,however.Anysignificantchangeintheprovisionofenergyintheseindustries,theiroperation,andtheircoststructurewillhave

profoundandsystemicramificationsacrossthebroadereconomy(Lovins,2021a;2021b).

ElectricityUseinIndustryToday

Theshareofelectricityamongallenergyinputsintheindustrialsectorvarieswidely,withageneralshifttowardincreasedelectricityuseintheindustrialsectorexpectedintheneartomediumterm.Thelowestshare,at14per-cent,isinnon-metallicminerals(mostlycement,glass,andceramicsindustries),andthehighestshareof65percentisinnon-ferrousmetals,composedmostlyofprimary

aluminumproductionthatuseselectrolysistoreduce

aluminumfromaluminumoxide.Electricityismostlyusedformachinedrives,toprovideelectricalcontrol

ofindustrialprocesses,andforsomemeansofelectric

heating(includingelectricarc,infraredradiation,elec-tronbeam,andplasmaheating).Someindustrialelectrictechnologiesuseelectricityasanalternativetodirectlyprovidingheat,forexample,usingmechanicalwork

inmechanicalvaporrecompressionheatpumpsorseparatingmaterialsusingselectivelypermeable

membranesratherthanusingheat.Othermeansof

materialseparationuseelectricpotentialgradients(e.g.,electrodialysis)orelectrolysis(e.g.,electrolyticrefiningofaluminaandcopper).Theincreasingdemandforrenew-ableenergytechnologywillitselfleadtoageneralshifttowardhigherelectricityuseintheindustrialsectorduetotheincreasedproductionandrefiningofrareearth

elementsandpotentialincreaseintherecyclingofmetals.

PathwaysforContributionofEIIs

toDecarbonization

Currently,industryaccountsformorethanone-thirdoftheglobalfinalenergyuse,makingitanessentialsectortodecarbonize.However,EIIs,owingtotheirheteroge-neityandtheneedforhigh-qualityheattotransform

rawmaterialsintomorerefinedmaterials,areparticularlychallengingtodecarbonize.Incontrasttotheelectric

powersector,wherelow-carbonelectricityisusedby

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup3

FIGuRE1

ConnectionsBetweenEnergy-IntensiveIndustriesandtheRestoftheEconomy

Note:TheredtextreferstotheEIIsdiscussedinthisreport.

Source:Wyns,Khandekar,andRobson(2018).

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup4

loadsinexactlythesamewayasfossilfuel–basedelec-tricity,theconceptofabaselineor“archetypal”industryfacilityisdifficulttodefine.Facilities’electricalandnon-electricalloads,operatingprocedures,andpracticesvaryfromlocationtolocationandhaveasignificanttime

dependenceregardingwhentheyareused.Inaddition,manyfacilitieswithinagivensectorusemultiplefuel

sourcesandhavemultiplepointsourcesofcarbondioxide(CO2).

ItisimportanttonotethatEIIshavealreadyplayedanimportantroleinemissionsreductions.Between1990and2015inEurope,EIIsreducedtheirgreenhouse

gasemissionsby36percent,representingapproximately28percentofeconomy-widereductions,despitethefact

thatEIIswereresponsibleforonly15percentoftotal

greenhousegasemissionsintheEuropeanUnionin

2015.Todate,EIIemissionsreductionshavecome

aboutthroughacombinationofimprovementsinenergyefficiency,fuelswitching,andplantclosuresorreducedoutput,largelyasaresultofthe2008financialcrisis.

Therearemanypathwaystofurtheremissionsreduc-

tions,asshowninTable1.Inadditiontofurtherenergyefficiencyimprovements,processintegration,andtheuseofcarboncapture,utilization,andstoragetechnologies(Wei,McMillan,anddelaRueduCan,2019),electri-ficationhasthebroadpotentialtocontributeacrossallsectors,throughbothheatandmechanicalprocesses

andthroughelectrolysisforhydrogenproduction.

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup5

Heat

Alargeproportionofindustrialemissionsarisefromtheprovisionofheat(orthermalpower).Giventherapidlyimprovingeconomicsofrenewable/low-carbonelectricalpowerandenergystorage,theelectrificationofEII

heatingneedsisbecomingmoreattractiveasameanstodecarbonizethissector.Hightoveryhightemperatures(above500°C)accountforoverhalfofindustrialheat

demand,andveryhightemperatures(above1000°C)

accountfor33percentofdemand.Electrificationof

heatdemandcanbeappliedacrossmostbasicmaterialsindustries,anditisaparticularlypromisingapproachforemissionsmitigationinindustriessuchasceramics,glass,andpaper.Low-temperatureheat(definedhereaslowerthan300°C)canbeprovidedrelativelyeasilyviaelectricboilersandelectricarc,infrared,induction,dielectric,

directresistance,microwave,andelectronbeamheating.However,toeconomicallyachievetemperaturesapproaching

TABlE1

EmissionsReductionApproachesforVariousEnergy-IntensiveIndustries

Electrification(Heatand

Mechanical)

Electrification(Processes:

Electrolysis/

Electro-

chemistry

ExcludingH2)

Hydrogen(Heatand/orProcess)

Carbon

Capture

and

utilization

Biomass

(Heatand

Feedstock)/Biofuels

Carbon

Capture

and

Storage

Other

(IncludingProcess

Integration)

Steel

xxx

xx

xxx

xxx

x

xxx

Avoidanceofinter-

mediateprocess

stepsandrecycling

ofprocessgases:xxx

Recyclinghigh-qualitysteel:xxx

Chemicalsandfertil-izers

xxx

xxx

xxx

xxx

xxx

xxx(in

particular

foram-

moniaand

ethylene

oxide)

Useofwastestreams(chemicalrecycling):xxx

Cement

Lime

xx

(cement)

x

(lime)

o

(cement)

o

(lime)

x

(cementand

lime)

xxx

(cementandlime)

xxx

(cement)

x

(lime)

xxx

(cementandlime)

Alternativebinders

(cement):xxx

Efficientuseofcementinconcretebyimprovingconcretemixdesign:xxx

Useofwastestreams(cement):xxx

Refining

xx

o

xxx

xxx

xxx

xxx

Efficiency:xxx

Ceramics

xxx

o

xx

x

x

o

Efficiency:xxx

Paper

xx

o

o

o

xxx

o

Efficiency:xxx

Glass

xxx

o

x

o

xxx

o

Higherglassrecycling:xx

Non-

ferrous

metals/

alloys

xxx

xxx

x

x

xxx

x

Efficiency:xxx

Recyclinghighqualitynon-ferrous:xxx

Inertanodes:xxx

o=Limitedornosignificnatapplicationforeseen

x=Possibleapplicationbutnotmainrouteorwide-scaleapplication

xx=Mediumpotentialxxx=Highpotential

xxx=Sectoralreadyappliestechnologyonlargescale(canbeexpandedinsomecases)

Note:Evenafterdecarbonizingheatforcement,reaction-basedemissionsremain.

Source:Wyns,Khandekar,andRobson(2018).

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup6

1,000°C,modificationsofelectricfurnacetechnology

areneeded.Itistechnicallypossibletoelectrifyhigh-

temperatureprocessheatingusing,forexample,electricarcfurnacesorelectriccalciners.Toachievetemperaturesbeyond1,000°C,asisrequiredintheproductionof

cementandglass,significantadditionalresearch,development,anddemonstrationisrequired.

Giventhedeeplyintegratednatureoftheseprocesses,anyalterationtoaparticularelementofaprocesswill

necessarilyinducechangestootheraspects.Electrifica-tionofthefurnacethereforenecessitatesadjustments

tootherstagesofproductionandwillhavecapitalcostimplications.Insomesectors,suchastherefining,steel,chemicals,andcementsectors,theelectrificationofheatcanbeatbestapartialsolutionandwilllikelyhavetobeusedincombinationwithothertechnologiesto

achievefulldecarbonization.

IndustrialProcesses

Processelectrificationisalreadyquitewidelyappliedin,forexample,secondarysteel,non-ferrousmetals,ferro-alloys,andsiliconproduction.Theelectrificationofironandsteelproductioncantakeseveralpossibleroutesandisanareaofactiveinterestformanyintheindustry

(Edie,2021).Onerouteistoincreasethecircularityoftheproductflowintheeconomybyincreasingrecyclingratesandtheuseofsecondarysteel,whichisproducedinelectricarcfurnaces.Ingeneral,steelretainsasignificantoverallrecyclingrate.In2014,thisratestoodat85per-cent(TataSteel,2021);however,whendemandforsteelishigh,thisproportiondropssignificantly—in2016

itwas35.5percent—owingtoamismatchbetween

demandforsteelandavailabilityofscrap(BIR,2020).Lookingbeyondironandsteel,severalothermetals

areproducedthroughelectrolysis,includingaluminum,nickel,andzinc.Theeconomicviabilityofelectrolyticapproachestometalrefiningis,ofcourse,afunction

ofthecostandcarbonintensityofelectricityandthecostofelectrolyzers(Allanore,2014).

Anotheroptionforindirectdecarbonizationviaelectri-fication,asdiscussedinmoredetailinthenextsection,

Hydrogencanplayakeyroleinindustrial

decarbonizationwhenthehydrogenis

producedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasanenergycarrier,asindustrialfeedstockforproductsand

fuels,orforlong-durationenergystorage.

iselectrolytichydrogen.Hydrogencanplayakeyroleinindustrialdecarbonizationwhenthehydrogenispro-ducedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasan

energycarrier,asindustrialfeedstockforproductsandfuels,orforlong-durationenergystorage.

Keytocontinuingtodecarbonizeindustriesthrough

increasingtheelectrificationofindustrialprocesseswillbetheprogressionoftechnologiestotechnologyreadinesslevels(TRL)above7andthefurtherdecarbonizationoftheelectricitygrid.3Sufficienttechnologicalmaturityisnotexpecteduntilthe2030s,duetotheneedtodemon-stratethesetechnologiesandmobilizecapacitytodeploythem,butbythentheymayprovideafruitfulwayto

decarbonizethesystem.Economicincentivesortechno-logicalbreakthroughsmaymakethesetechnologiesrel-evantevensooner;however,2030isalreadywellwithintheplanningtimeframefortheelectricpowerindustry.

Themovetowardfuel-switchingfromnaturalgasto

electricitywillbedrivenbyenergyandenvironmental

policies(EPRI,2018);however,electrificationbenefits

forindustrialprocessingalsoincludenon-energybenefitssuchasproductqualityandyield;processtime,control-lability,andflexibility;andsafety.Forexample,potentialnon-energybenefitsininductionheatingincludefasterstart-up,enhancedprocesscontrollabilityandflexibility,reducedspacerequiredforfuelstorageandhandling,animprovedworkingenvironmentforworkersduetothe

eliminationofcombustionemissions,andlesswasteheat.

3TheTRLscalerunsfrom1through9,with1beingrelatedto(fundamental)researchand9referringtofulltechnologicalmaturity.

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup7

ProvisionofFlexibility

fromEnergy-IntensiveIndustries

T

heelectrificationofindustry,acriticalcomponentofindustrialdecarbonization,providesopportuni-tiesforthesectortooffermuch-neededflexibilitytoelectricitygridswithhighlevelsofvariablerenewableenergy.Thisflexibilitycanbeprovidedvialow-orzero-carbongenerationresources(includinghydrogen,dis-

cussedbelow);grid-scaleenergystorage;or,asdiscussedhere,demandresponse.Importantly,theabsolutequan-tityofcurrentlyavailableflexiblecapacitythatisrequiredonavery-high-renewablesgridappearstobelowin

comparisontothetotalinstalledcapacitiesofsupplyanddemandresources;hence,flexibilitythroughindustrialelectrificationcouldintheoryplayanimportantrole.

Astheelectrificationoftheindustrialsectorproceeds,theincreaseddemandforelectricityislikelytorequiresignificantexpansionincleanelectricitygeneration

technologiessuchaswindandsolarphotovoltaics.The

variabilityoftheseresources,inturn,increasestheneedforflexibleloadsthatcanrespondtothechangingout-putofrenewablegenerationonthegrid.Ifhighlyelectri-fiedindustriesareincentivizedtodoso,somewillbeinapositiontoprovidesignificantflexibilitythroughflexibleloadsandtheprovisionofenergystoragethatsupportsgridreliabilityandflexibility.GiventhehighlycoupledwayinwhichtheEIIsandelectricitysystemwillco-

evolve,understandinghowEIIscancontributetothe

flexibilityandreliabilityofthepowersystemiskey.

IncreasedDemandasaResult

ofIncreasedElectrificationofIndustry

Thelarge-scaleelectrificationofEIIswill,directlyor

indirectly,requiresignificantamountsofelectricityto

industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup8

operate.InEurope,forexample,EIIsareprojectedtobecomethelargestelectricityconsumerby2050,con-suminganadditional3,000to4,400TWhcompared

to2016levels(a120to180percentincrease)(Eurostat,2021).Manysuchloadswouldbeexpectedtohavea

relativelyconstantdemand,astheunderlyingindustrialprocessesaredesignedtooperateatsteadystate,at

leastintheircurrentform.

InastudybytheElectricPowerResearchInstitute

evaluatingtheimpactofindustrialelectrificationontheelectricitygrid,thescenariowiththehighestlevelsof

electrificationshowedtheelectricityshareofindustry

finalenergydemandincreasingfrom27percentinthe

referencescenarioto45percentin2050(EPRI,2018),demonstratingthatindustrialelectrificationcouldpro-videopportunitiesforcloserintegrationandoptimizationoftheU.S.energysystem.Anotherstudylookingat

Chinafoundthatmaximizingelectrificationusingcom-merciallyavailabletechnologiesinindustriesincludingsteel,foodandbeverages,glass,andpulpandpapercouldincreaseitsindustrialsector’sshareofelectricityconsump-tionin2050fromabout30percentunderbusiness-as-usualassumptionstonearly40percent(Khannaetal.,

2017).

Completelyelectrifyingtheindustrialsectorwould

requireasignificantamountofnewelectricitygenerationcapacity,evenwhenelectrictechnologiesprovideimprovedenergyefficiency.Onestudyexaminedascenarioinwhichelectro-thermaltechnologiesforheatingandelectrolysisformaterialseparationsreplacedallenergyrequirementsofeightEIIsintheEuropeanUnionandestimateda

four-foldincreaseinelectricitydemandby2050(Lech-tenb?hmeretal.,2016).Itfoundthatthereplacementofpetroleum-derivedfuelsandfeedstockswithH2,CO2,

andsyngaswouldinvolvenearly10timesmoreelectric-ityby2050.ThecarbonrequiredtoproducereplacementhydrocarbonscouldeitherbecapturedCO2frompowerplants,capturedfromtheCO2/COportionofsyngas

(CO2/CO+H2),orobtainedfromdirectaircapture.

Switchingfromfossiltonon-fossilindustrialfeedstocksalsogreatlyincreasestheelectricityconsumed.Forex-ample,onestudyanalyzedtheswitchingoffeedstocksfortheproductionofcommonindustrialchemicals

fromfossiltonon-fossilfeedstocksusingelectrolytic

technologies,andestimatedth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論